An ensemble method for prediction of conformational B-cell epitopes from antigen sequences

被引:20
|
作者
Zheng, Wei [1 ,2 ]
Zhang, Chen [1 ,2 ]
Hanlon, Michelle [3 ]
Ruan, Jishou [1 ,2 ,4 ]
Gao, Jianzhao [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Grant MacEwan Univ, Dept Phys Sci, Edmonton, AB T5J 4S2, Canada
[4] Nankai Univ, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
关键词
Bound dataset; Unbound dataset; Support vector machine; Beta-turn; Flexibility; SECONDARY STRUCTURE PREDICTION; RESIDUES; SERVER; DETERMINANTS; PROTEINS; DATABASE;
D O I
10.1016/j.compbiolchem.2014.02.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Epitopes are immunogenic regions in antigen protein. Prediction of B-cell epitopes is critical for immunological applications. B-cell epitopes are categorized into linear and conformational. The majority of B-cell epitopes are conformational. Several machine learning methods have been proposed to identify conformational B-cell epitopes. However, the quality of these methods is not ideal. One question is whether or not the prediction of conformational B-cell epitopes can be improved by using ensemble methods. In this paper, we propose an ensemble method, which combined 12 support vector machine-based predictors, to predict the conformational B-cell epitopes, using an unbound dataset. AdaBoost and resampling methods are used to deal with an imbalanced labeled dataset. The proposed method achieves AUC of 0.642-0.672 on training dataset with 5-fold cross validation and AUC of 0.579-0.604 on test dataset. We also find some interesting results with the bound and unbound datasets. Epitopes are more accessible than non-epitopes, in bound and unbound datasets. Epitopes are also preferred in beta-turn, in bound and unbound datasets. The flexibility and polarity of epitopes are higher than non-epitopes. In a bound dataset, Asn (N), Glu (E), Gly (G), Lys (K), Ser (S), and Thr (T) are preferred in epitope regions, while Ala (A), Leu (L) and Val (V) are preferred in non-epitope regions. In the unbound dataset, Glu (E) and Lys (K) are preferred in epitope sites, while Leu (L) and Val (V) are preferred in non-epitiopes sites. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 50 条
  • [21] Computational Methods to Predict Conformational B-Cell Epitopes
    Carroll, M.
    Rosenbaum, E.
    Viswanathan, R.
    BIOMOLECULES, 2024, 14 (08)
  • [22] Identification of Antigen-Specific B-Cell Receptor Sequences from the Total B-Cell Repertoire
    Galson, Jacob D.
    Kelly, Dominic F.
    Truck, Johannes
    CRITICAL REVIEWS IN IMMUNOLOGY, 2015, 35 (06) : 463 - 478
  • [23] SEMA: Antigen B-cell conformational epitope prediction using deep transfer learning
    Shashkova, Tatiana I. I.
    Umerenkov, Dmitriy
    Salnikov, Mikhail
    Strashnov, Pavel V. V.
    Konstantinova, Alina V. V.
    Lebed, Ivan
    Shcherbinin, Dmitriy N. N.
    Asatryan, Marina N. N.
    Kardymon, Olga L. L.
    Ivanisenko, Nikita V. V.
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [24] Molecular Characterization and B-cell Epitopes Prediction of the Antigen pEtK2 of Eimeria Tenella
    Chen, Xiwen
    Yin, Miao
    Wang, Xiongqing
    Fang, Chunlin
    ADVANCED RESEARCH ON INFORMATION SCIENCE, AUTOMATION AND MATERIAL SYSTEM, PTS 1-6, 2011, 219-220 : 1569 - +
  • [25] The Computational Prediction Methods for Linear B-cell Epitopes
    Jia, Cangzhi
    Gong, Hongyan
    Zhu, Yan
    Shi, Yixia
    CURRENT BIOINFORMATICS, 2019, 14 (03) : 226 - 233
  • [26] Preliminary immunoinformatics research for prediction the most immunogenic linear and conformational B-cell epitopes of 14-3-3 antigen in echinococcus granulosus
    Moghaddam, G.
    Pourseif, M. M.
    Omidi, Y.
    Daghighkia, H.
    Nematollahi, A.
    Jafari-Jozani, R.
    Barzegari, A.
    Dehghani, J.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2016, 45 : 422 - 423
  • [27] SEMA 2.0: web-platform for B-cell conformational epitopes prediction using artificial intelligence
    Ivanisenko, Nikita, V
    Shashkova, Tatiana, I
    Shevtsov, Andrey
    Sindeeva, Maria
    Umerenkov, Dmitriy
    Kardymon, Olga
    NUCLEIC ACIDS RESEARCH, 2024, 52 (W1) : W533 - W539
  • [28] Prediction of Conformational and Linear B-Cell Epitopes on Envelop Protein of Zika Virus Using Immunoinformatics Approach
    Kirti Srivastava
    Vivek Srivastava
    International Journal of Peptide Research and Therapeutics, 29
  • [29] Prediction of Conformational and Linear B-Cell Epitopes on Envelop Protein of Zika Virus Using Immunoinformatics Approach
    Srivastava, Kirti
    Srivastava, Vivek
    INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2023, 29 (01)
  • [30] Analysis of Conformational B-Cell Epitopes in the Antibody-Antigen Complex Using the Depth Function and the Convex Hull
    Zheng, Wei
    Ruan, Jishou
    Hu, Gang
    Wang, Kui
    Hanlon, Michelle
    Gao, Jianzhao
    PLOS ONE, 2015, 10 (08):