Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature

被引:31
|
作者
Capela, Jorge M. V. [1 ]
Capela, Marisa V. [1 ]
Ribeiro, Clovis A. [1 ]
机构
[1] Univ Estadual Paulista, Inst Quim, BR-14801970 Araraquara, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonisothermal kinetic; Arrhenius integral; Jacobi fractions; Three-term recurrence relations; Quadrature formula; ACTIVATION-ENERGY;
D O I
10.1007/s10910-008-9381-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The aim of this work is to find approaches for the Arrhenius integral by using the n-th convergent of the Jacobi fractions. The n-th convergent is a rational function whose numerator and denominator are polynomials which can be easily computed from three-term recurrence relations. It is noticed that such approaches are equivalent to the one established by the Gauss quadrature formula and it can be seen that the coefficients in the quadrature formula can be given as a function of the coefficients in the recurrence relations. An analysis of the relative error percentages in the approximations is also presented.
引用
收藏
页码:769 / 775
页数:7
相关论文
共 50 条
  • [21] Uniqueness and computation of Gaussian interval quadrature formula for Jacobi weight function
    Milovanovic, GV
    Cvetkovic, AS
    NUMERISCHE MATHEMATIK, 2004, 99 (01) : 141 - 162
  • [22] Approximations for the generalized temperature integral: a method based on quadrature rules
    Capela, Jorge M. V.
    Capela, Marisa V.
    Ribeiro, Clovis A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 97 (02) : 521 - 524
  • [23] Approximations for the generalized temperature integral: a method based on quadrature rules
    Jorge M. V. Capela
    Marisa V. Capela
    Clóvis A. Ribeiro
    Journal of Thermal Analysis and Calorimetry, 2009, 97 : 521 - 524
  • [24] Rational approximations of the Arrhenius and general temperature integrals, expansion of the incomplete gamma function
    Aghili, Alireza
    Arabli, Vahid
    Shabani, Amir Hossein
    CHEMICAL ENGINEERING COMMUNICATIONS, 2024, 211 (06) : 844 - 858
  • [25] Costate approximation in optimal control using integral Gaussian quadrature orthogonal collocation methods
    Francolin, Camila C.
    Benson, David A.
    Hager, William W.
    Rao, Anil V.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (04): : 381 - 397
  • [26] On rational functions of the best nonsymmetric approximations in integral metrics
    O. V. Polyakov
    N. O. Ruchaevskaya
    Ukrainian Mathematical Journal, 2013, 64 : 1780 - 1783
  • [27] On rational functions of the best nonsymmetric approximations in integral metrics
    Polyakov, O. V.
    Ruchaevskaya, N. O.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 64 (11) : 1780 - 1783
  • [28] Gaussian rational quadrature formulas for ill-scaled integrands
    Illan Gonzalez, J. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) : 745 - 748
  • [29] ESTIMATES OF ERRORS OF SOME INTEGRAL APPROXIMATIONS BY GAUSSIAN MEASURE
    EGOROV, AD
    DOKLADY AKADEMII NAUK BELARUSI, 1975, 19 (03): : 204 - 207
  • [30] ON RATIONAL FRACTIONS APPROXIMATIONS OF PI/SQUARE-ROOT-3
    DUBITSKAS, AK
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (06): : 73 - 76