The implications of grading on the emission line width of core-shell nanocrystals

被引:3
|
作者
Phadnis, Chinmay [1 ,2 ]
Sonawane, Kiran G. [1 ,3 ]
Sudarsan, V. [4 ]
Mahamuni, Shailaja [1 ]
机构
[1] S P Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[2] Indian Inst Technol, Dept Chem, Mumbai 400076, Maharashtra, India
[3] Govt Vidarbha Inst Sci & Human, Dept Phys & Elect, Amravati 444604, India
[4] Bhabha Atom Res Ctr, Div Chem, Mumbai 400085, India
关键词
II-VI nanocrystals; graded nanocrystals; luminescence line width; exciton-phonon coupling; TUNABLE ZNXCD1-XSE NANOCRYSTALS; ONE-POT SYNTHESIS; OPTICAL-PROPERTIES; QUANTUM DOTS; NONRADIATIVE RELAXATION; LATTICE STRAIN; FINE-STRUCTURE; STOKES SHIFT; TEMPERATURE; EXCITON;
D O I
10.1088/1361-6463/aa5f25
中图分类号
O59 [应用物理学];
学科分类号
摘要
An excitonic coupling with phonons leads to broadening of the emission line. The narrow excitonic emission line width observed in CdZnS/ZnS alloy core graded shell nanocrystals (NCs) with varying compositions is studied using temperature-dependent photoluminescence measurements. Contrary to the consensus that a narrow emission line width is observable with a reduction in size (due to the increased exciton-acoustic phonon coupling coefficient sigma), an increased value is noted with reduced size. Based on a theoretical approach to graded core-shell NCs, the relationship between the electron-hole wave function overlap and exciton lifetime is invoked to understand this anomaly. Smaller alloy core-shell NCs (CdZnS/ZnS-I) have a longer lifetime than larger NCs (CdZnS/ZnS-II), indicating reduced electron-hole wave function overlap for CdZnS/ZnS-I NCs and hence a larger 'effective size' of NCs, even though the actual size is smaller. The experimental findings demonstrate that graded core-shell NCs reveal an additional functionality, facilitating control of the emission line width of NCs via minimal interaction with the solid state environment.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Charge carrier identification in tunneling spectroscopy of core-shell nanocrystals
    Nguyen, T. H.
    Habinshuti, J.
    Justo, Y.
    Gomes, R.
    Mahieu, G.
    Godey, S.
    Nys, J. P.
    Carrillo, S.
    Hens, Z.
    Robbe, O.
    Turrell, S.
    Grandidier, B.
    PHYSICAL REVIEW B, 2011, 84 (19)
  • [22] Rational material design using Au core-shell nanocrystals
    Mulvaney, P
    Liz-Marzán, LM
    COLLOID CHEMISTRY 1, 2003, 226 : 225 - 246
  • [23] Synthesis of CuInS2@CdS core-shell nanocrystals
    Wei, Qinglian
    Mu, Jin
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2007, 28 (06) : 916 - 919
  • [24] Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals
    Singh, Shailendra
    Bozhilov, Krassimir
    Mulchandani, Ashok
    Myung, Nosang
    Chen, Wilfred
    CHEMICAL COMMUNICATIONS, 2010, 46 (09) : 1473 - 1475
  • [25] Preparation of core-shell Ti-Nb oxide nanocrystals
    David S. A. Simakov
    Yoed Tsur
    Journal of Nanoparticle Research, 2008, 10 : 77 - 85
  • [26] Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres
    Chan, Y
    Zimmer, JP
    Stroh, M
    Steckel, JS
    Jain, RK
    Bawendi, MG
    ADVANCED MATERIALS, 2004, 16 (23-24) : 2092 - +
  • [27] Electron holography of core-shell Co/CoO spherical nanocrystals
    Gao, Youhui
    Shindo, Daisuke
    Bao, Yuping
    Krishnan, Kannan
    APPLIED PHYSICS LETTERS, 2007, 90 (23)
  • [28] Blue luminescence from (CdS)ZnS core-shell nanocrystals
    Steckel, JS
    Zimmer, JP
    Coe-Sullivan, S
    Stott, NE
    Bulovic, V
    Bawendi, MG
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) : 2154 - 2158
  • [29] Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance
    Nanda, J
    Ivanov, SA
    Htoon, H
    Bezel, I
    Piryatinski, A
    Tretiak, S
    Klimov, VI
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (03)
  • [30] Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance
    Nanda, J.
    Ivanov, S.A.
    Htoon, H.
    Bezel, I.
    Piryatinski, A.
    Tretiak, S.
    Klimov, V.I.
    Journal of Applied Physics, 1600, 99 (03):