Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network

被引:173
|
作者
Yi, Yaning [1 ,2 ]
Zhang, Zhijie [3 ]
Zhang, Wanchang [1 ]
Zhang, Chuanrong [3 ]
Li, Weidong [3 ]
Zhao, Tian [4 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Connecticut, Dept Geog, Storrs, CT 06269 USA
[4] Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53211 USA
关键词
semantic segmentation; urban building extraction; deep convolutional neural network; VHR remote sensing imagery; U-Net; AERIAL IMAGES; CLASSIFICATION; EXTRACTION; LIDAR; AREAS; SVM;
D O I
10.3390/rs11151774
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban building segmentation is a prevalent research domain for very high resolution (VHR) remote sensing; however, various appearances and complicated background of VHR remote sensing imagery make accurate semantic segmentation of urban buildings a challenge in relevant applications. Following the basic architecture of U-Net, an end-to-end deep convolutional neural network (denoted as DeepResUnet) was proposed, which can effectively perform urban building segmentation at pixel scale from VHR imagery and generate accurate segmentation results. The method contains two sub-networks: One is a cascade down-sampling network for extracting feature maps of buildings from the VHR image, and the other is an up-sampling network for reconstructing those extracted feature maps back to the same size of the input VHR image. The deep residual learning approach was adopted to facilitate training in order to alleviate the degradation problem that often occurred in the model training process. The proposed DeepResUnet was tested with aerial images with a spatial resolution of 0.075 m and was compared in performance under the exact same conditions with six other state-of-the-art networks-FCN-8s, SegNet, DeconvNet, U-Net, ResUNet and DeepUNet. Results of extensive experiments indicated that the proposed DeepResUnet outperformed the other six existing networks in semantic segmentation of urban buildings in terms of visual and quantitative evaluation, especially in labeling irregular-shape and small-size buildings with higher accuracy and entirety. Compared with the U-Net, the F1 score, Kappa coefficient and overall accuracy of DeepResUnet were improved by 3.52%, 4.67% and 1.72%, respectively. Moreover, the proposed DeepResUnet required much fewer parameters than the U-Net, highlighting its significant improvement among U-Net applications. Nevertheless, the inference time of DeepResUnet is slightly longer than that of the U-Net, which is subject to further improvement.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery
    Fu, Tengyu
    Ma, Lei
    Li, Manchun
    Johnson, Brian A.
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02)
  • [22] Training Convolutional Neural Networks for Semantic Classification of Remote Sensing Imagery
    Castelluccio, Marco
    Poggi, Giovanni
    Sansone, Carlo
    Verdoliva, Luisa
    2017 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2017,
  • [23] Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
    Huang, Bo
    Zhao, Bei
    Song, Yimeng
    REMOTE SENSING OF ENVIRONMENT, 2018, 214 : 73 - 86
  • [24] Extraction of Buildings in Remote Sensing Imagery with Deep Belief Network
    Tun, Su Wai
    Tun, Khin Mo Mo
    2019 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGIES (ICAIT), 2019, : 167 - 170
  • [25] CRFNet: A Deep Convolutional Network to Learn the Potentials of a CRF for the Semantic Segmentation of Remote Sensing Images
    Pastorino, Martina
    Moser, Gabriele
    Serpico, Sebastiano B.
    Zerubia, Josiane
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [26] Hyperspectral Remote Sensing Image Segmentation Based on the Fuzzy Deep Convolutional Neural Network
    Zhao Tianyu
    Xu, Jindong
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 181 - 186
  • [27] A review of deep learning methods for semantic segmentation of remote sensing imagery
    Yuan, Xiaohui
    Shi, Jianfang
    Gu, Lichuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [28] STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
    Gao, Liang
    Liu, Hui
    Yang, Minhang
    Chen, Long
    Wan, Yaling
    Xiao, Zhengqing
    Qian, Yurong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 10990 - 11003
  • [29] Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network
    Zhang Zhehan
    Fang Wei
    Du Lili
    Qiao Yanli
    Zhang Dongying
    Ding Guoshen
    ACTA OPTICA SINICA, 2020, 40 (03)
  • [30] On the contextual aspects of using deep convolutional neural network for semantic image segmentation
    Wang, Chunlai
    Mauch, Lukas
    Saxena, Mehul Manoj
    Yang, Bin
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)