Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint

被引:316
|
作者
Zhao, Yong-Qiang [1 ]
Yang, Jingxiang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
来源
关键词
Global redundancy and correlation (RAC); hyperspectral image (HSI) denoising; local RAC; low rank; sparse representation; JOINT-SPARSE; ALGORITHM; SIGNAL; OPTIMIZATION;
D O I
10.1109/TGRS.2014.2321557
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) denoising is an essential preprocess step to improve the performance of subsequent applications. For HSI, there is much global and local redundancy and correlation (RAC) in spatial/spectral dimensions. In addition, denoising performance can be improved greatly if RAC is utilized efficiently in the denoising process. In this paper, an HSI denoising method is proposed by jointly utilizing the global and local RAC in spatial/spectral domains. First, sparse coding is exploited to model the global RAC in the spatial domain and local RAC in the spectral domain. Noise can be removed by sparse approximated data with learned dictionary. At this stage, only local RAC in the spectral domain is employed. It will cause spectral distortion. To compensate the shortcoming of local spectral RAC, low-rank constraint is used to deal with the global RAC in the spectral domain. Different hyperspectral data sets are used to test the performance of the proposed method. The denoising results by the proposed method are superior to results obtained by other state-of-the-art hyperspectral denoising methods.
引用
收藏
页码:296 / 308
页数:13
相关论文
共 50 条
  • [21] Fast Hyperspectral Image Denoising and Inpainting Based on Low-Rank and Sparse Representations
    Zhuang, Lina
    Bioucas-Dias, Jose M.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (03) : 730 - 742
  • [22] Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor Approximation and Sparse Representation
    Li, Xuelong
    Yuan, Yue
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 550 - 562
  • [23] HYPERSPECTRAL IMAGE DENOISING VIA SPECTRAL AND SPATIAL LOW-RANK APPROXIMATION
    Chang, Yi
    Yan, Luxin
    Zhong, Sheng
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4193 - 4196
  • [24] Single image super-resolution via adaptive sparse representation and low-rank constraint
    Li, Xuesong
    Cao, Guo
    Zhang, Youqiang
    Wang, Bisheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 55 : 319 - 330
  • [25] Hyperspectral image denoising and destriping based on sparse representation, graph Laplacian regularization and stripe low-rank property
    Zhang, Zhi
    Yang, Fang
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [26] Hyperspectral image denoising and destriping based on sparse representation, graph Laplacian regularization and stripe low-rank property
    Zhi Zhang
    Fang Yang
    EURASIP Journal on Advances in Signal Processing, 2022
  • [27] Adaptive Boosting for Image Denoising: Beyond Low-Rank Representation and Sparse Coding
    Wang, Bo
    Lu, Tao
    Xiong, Zixiang
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1400 - 1405
  • [28] Fast Large-Scale Hyperspectral Image Denoising via Noniterative Low-Rank Subspace Representation
    Chen, Yong
    Zeng, Jinshan
    He, Wei
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Huang, Qing
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [29] Hyperspectral Image Denoising via Subspace Low-rank Representation and Spatial-spectral Total Variation
    Ye, Jun
    Zhang, Xian
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2020, 64 (01)
  • [30] Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification
    Zhaohui XUE
    Xiangyu NIE
    Journal of Geodesy and Geoinformation Science, 2022, (01) : 73 - 90