Different combinations of Fe3O4 microsphere, Polypyrrole and silver as core-shell nanocomposites for adsorption and photocatalytic application

被引:20
|
作者
Cheng, Yang [1 ,2 ]
Gao, Fang [1 ]
An, Liang [1 ]
Li, Xiaomin [1 ]
Wang, Guanghui [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Chem Engn & Technol, Wuhan 430081, Peoples R China
[2] China Univ Geosci, Minist Educ, Engn Res Ctr Nanogeomat, Wuhan 430074, Peoples R China
关键词
Polypyrrole; Ferroferric oxide; Heterostructure; Adsorption; Photocatalysis; DOPED TIO2; HETEROSTRUCTURE NANOCRYSTALS; ANATASE TIO2; DEGRADATION; NANOFIBERS; NANOPARTICLES; COMPOSITES; PARTICLES; INTERFACE; NANOTUBES;
D O I
10.1016/j.apt.2014.05.013
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Several core-shell nanocomposites composed of Fe3O4 microspheres, Polypyrrole and silver were fabricated here by a series of wet chemical methods. The as-prepared nanocomposites were further used in adsorption and photodegradation of azo dyes. The chemical properties of the products were characterized by a series of techniques and equipment. The adsorption and photocatalytic activities of the obtained core-shell heterostructure were studied by controlled experiments. It was found that Fe3O4@PPy nanostructure exhibited the highest removal abilities towards organic dyes in aqueous solution among the as-prepared samples. The final removal ratio is 86.2% and 80.4% for Methyl Orange and Orange II aqueous solutions, respectively. Deposition of Ag nanoparticles was employed here to investigate the transportation and separation of photo-induced charges on the surface or interface of Fe3O4@PPy under UV illumination. (C) 2014 The Society of Powder Technology Japan. Published by Elsevier B. V. and The Society of Powder Technology Japan. All rights reserved.
引用
收藏
页码:1600 / 1607
页数:8
相关论文
共 50 条
  • [41] High frequency study of core-shell and uncoated Fe3O4 nanoparticles
    Kuanr, Bijoy K.
    Veerakumar, V.
    Kuanr, Alka V.
    Lingam, Kiran
    Mishra, S. R.
    Camley, R. E.
    Celinski, Z.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
  • [42] Detection of Lead Ions with Fe3O4/Ag Core-Shell Nanoparticles
    Jiang, Caiyun
    Ma, Xiaoyuan
    Yu, Fang
    Shi, Xueping
    Yang, Aiping
    Wang, Yuping
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (07) : 7215 - 7219
  • [43] Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles
    L. León Félix
    J. A. H. Coaquira
    M. A. R. Martínez
    G. F. Goya
    J. Mantilla
    M. H. Sousa
    L. de los Santos Valladares
    C. H. W. Barnes
    P. C. Morais
    Scientific Reports, 7
  • [44] Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology
    Fang, Fei Fei
    Kim, Ji Hye
    Choi, Hyoung Jin
    POLYMER, 2009, 50 (10) : 2290 - 2293
  • [45] Synthesis and Characterization of Fe3O4 @ Polyrhodanine Nanocomposite with Core-Shell Morphology
    Rahmanzadeh, Lida
    Ghorbani, Mohsen
    Jahanshahi, Mohsen
    ADVANCES IN POLYMER TECHNOLOGY, 2014, 33
  • [46] Studies on Highly Conducting Polypyrrole/Fe3O4 Nanocomposites
    Mathad, Jyotsna Kiran
    Rao, R. M. V. G. K.
    POLYMER COMPOSITES, 2011, 32 (09) : 1416 - 1422
  • [47] Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core-shell bio-nanocomposites
    Fan, Jixiang
    Chen, Dongyun
    Li, Najun
    Xu, Qingfeng
    Li, Hua
    He, Jinghui
    Lu, Jianmei
    CHEMOSPHERE, 2018, 191 : 315 - 323
  • [48] Synthesis and characterization of magnetic-photocatalytic Fe3O4/SiO2/a-Fe2O3 nano core-shell
    Khoshnam, Mahsa
    Salimijazi, Hamidreza
    SURFACES AND INTERFACES, 2021, 26
  • [49] Fe3O4/CoFe2O4 core-shell nanoparticles with enhanced magnetic properties for hyperthermia application
    Oanh, V. T. K.
    Nguyen, L. H.
    Phong, L. T. H.
    Trang, M. T. T.
    Thu, H. P.
    Truong, N. X.
    Ca, N. X.
    Nam, P. H.
    Manh, D. H.
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2024, 15 (02)
  • [50] Fe3O4/Co3O4 core-shell nanocomposites modified structure and properties of heavy metal oxide diamagnetic glasses
    Chen, Qiuling
    Su, Kai
    Zhang, Meng
    Ma, Qiuhua
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2019, 509 : 10 - 22