Nanolithography by displacement of catalytic metal clusters using an atomic force microscope tip

被引:25
|
作者
Brandow, SL
Dressick, WJ
Dulcey, CS
Koloski, TS
Shirey, LM
Schmidt, J
Calvert, JM
机构
[1] INTEGUMENT TECHNOL, KENMORE, NY 14217 USA
[2] USN, RES LAB, NANOELECT PROC FACIL, WASHINGTON, DC 20375 USA
[3] INST CHARLES SADRON, CNRS, F-67083 STRASBOURG, FRANCE
来源
关键词
D O I
10.1116/1.589531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of catalytically active nanoclusters as a novel material for atomic force microscope (AFM) nanolithography is demonstrated. Films were prepared from colloidal Au nanoparticles and giant Pd clusters. Lithographic patterns were generated using the contact area of the AFM tip to physically displace nanoclusters, forming two-dimensional patterns on silicon oxide and functionalized silicon surfaces. Linewidth was found to depend on the force applied to the nanoparticles and the number of tip passes used to generate the pattern. Conditions were optimized to clear scanned areas using minimum applied force. Patterned films were used as templates for the selective deposition of electroless metal, which served as a robust plasma etch mask for pattern transfer into the underlying substrate to a depth of 200 nm. Minimum linewidths of approximately 35 nm were achieved in etched samples. (C) 1997 American Vacuum Society. [S0734-211X(97)00105-4].
引用
收藏
页码:1818 / 1824
页数:7
相关论文
共 50 条
  • [1] Noncontact nanolithography using the atomic force microscope
    Wilder, K
    Quate, CF
    Adderton, D
    Bernstein, R
    Elings, V
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (17) : 2527 - 2529
  • [2] Nanolithography with an atomic force microscope
    Wendel, M
    Irmer, B
    Cortes, J
    Kaiser, R
    Lorenz, H
    Kotthaus, JP
    Lorke, A
    Williams, E
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1996, 20 (03) : 349 - 356
  • [3] Nanolithography by local anodic oxidation of metal films using an atomic force microscope
    Held, R
    Heinzel, T
    Studerus, P
    Ensslin, K
    [J]. PHYSICA E, 1998, 2 (1-4): : 748 - 752
  • [4] Nanolithography and manipulation of graphene using an atomic force microscope
    Giesbers, A. J. M.
    Zeitler, U.
    Neubeck, S.
    Freitag, F.
    Novoselov, K. S.
    Maan, J. C.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 147 (9-10) : 366 - 369
  • [5] Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements
    Puddy, R. K.
    Scard, P. H.
    Tyndall, D.
    Connolly, M. R.
    Smith, C. G.
    Jones, G. A. C.
    Lombardo, A.
    Ferrari, A. C.
    Buitelaar, M. R.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (13)
  • [6] Recognition and nanolithography with the atomic force microscope
    Boland, T
    Johnston, EE
    Ratner, BD
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 323 - POLY
  • [7] Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope
    Heyde, M
    Rademann, K
    Cappella, B
    Geuss, M
    Sturm, H
    Spangenberg, T
    Niehus, H
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 136 - 141
  • [8] Force nanolithography on various surfaces by atomic force microscope
    Hassani, S. Sadegh
    Sobat, Z.
    Aghabozorg, H.R.
    [J]. International Journal of Nanomanufacturing, 2010, 5 (3-4) : 217 - 224
  • [9] Metal pattern fabrication using a conducting tip atomic force microscope.
    Brandow, SL
    Snow, ES
    Campbell, PM
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U213 - U213
  • [10] Nanolithography in polymethylmethacrylate: An atomic force microscope study
    Dobisz, EA
    Brandow, SL
    Bass, R
    Shirey, LM
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06): : 3695 - 3700