Noncontact nanolithography using the atomic force microscope

被引:97
|
作者
Wilder, K [1 ]
Quate, CF
Adderton, D
Bernstein, R
Elings, V
机构
[1] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
[2] Digital Instruments, Santa Barbara, CA 93117 USA
关键词
D O I
10.1063/1.122504
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have demonstrated that the atomic force microscope (AFM) operating in air may be used to pattern narrow features in resist in a noncontact lithography mode. A micromachined AFM cantilever with an integrated silicon probe tip acts as a source of electrons. The field emission current from the tip is sensitive to the tip-to-sample spacing and is used as the feedback signal to control this spacing. Feature sizes below 30 nm have been patterned in 65-nm-thick resist and transferred through reactive ion etching into the silicon substrate. We show that the same AFM probe used for noncontact patterning can be used to image the sample. In addition to eliminating the problem of tip wear, this noncontact system is easily adapted to multiple-tip arrays where each cantilever has an integrated actuator to adjust the probe height. (C) 1998 American Institute of Physics. [S0003-6951(98)04643-9].
引用
收藏
页码:2527 / 2529
页数:3
相关论文
共 50 条
  • [1] Nanolithography with an atomic force microscope
    Wendel, M
    Irmer, B
    Cortes, J
    Kaiser, R
    Lorenz, H
    Kotthaus, JP
    Lorke, A
    Williams, E
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1996, 20 (03) : 349 - 356
  • [2] Nanolithography and manipulation of graphene using an atomic force microscope
    Giesbers, A. J. M.
    Zeitler, U.
    Neubeck, S.
    Freitag, F.
    Novoselov, K. S.
    Maan, J. C.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 147 (9-10) : 366 - 369
  • [3] Recognition and nanolithography with the atomic force microscope
    Boland, T
    Johnston, EE
    Ratner, BD
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 323 - POLY
  • [4] Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope
    Heyde, M
    Rademann, K
    Cappella, B
    Geuss, M
    Sturm, H
    Spangenberg, T
    Niehus, H
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 136 - 141
  • [5] Force nanolithography on various surfaces by atomic force microscope
    Hassani, S. Sadegh
    Sobat, Z.
    Aghabozorg, H.R.
    [J]. International Journal of Nanomanufacturing, 2010, 5 (3-4) : 217 - 224
  • [6] Nanolithography in polymethylmethacrylate: An atomic force microscope study
    Dobisz, EA
    Brandow, SL
    Bass, R
    Shirey, LM
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06): : 3695 - 3700
  • [7] Atomic force microscope nanolithography of polymethylmethacrylate polymer
    Teixeira, F. S.
    Mansano, R. D.
    Salvadori, M. C.
    Cattani, M.
    Brown, I. G.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (05):
  • [8] Modeling of haptic sensing of nanolithography with an atomic force microscope
    Fok, LM
    Liu, YH
    Li, WJ
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 2446 - 2451
  • [9] An atomic force microscope nanoscalpel for nanolithography and biological applications
    Beard, J. D.
    Burbridge, D. J.
    Moskalenko, A. V.
    Dudko, O.
    Yarova, P. L.
    Smirnov, S. V.
    Gordeev, S. N.
    [J]. NANOTECHNOLOGY, 2009, 20 (44)
  • [10] Measurement of the evanescent field using noncontact mode atomic force microscope
    Abe M.
    Uchihashi T.
    Ohta M.
    Ueyama H.
    Sugawara Y.
    Morita S.
    [J]. Optical Review, 1997, 4 (1) : A232 - A235