SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint

被引:196
|
作者
Carvalho, Silvia [1 ]
Vitor, Alexandra C. [1 ]
Sridhara, Sreerama Chaitanya [1 ]
Martins, Filipa B. [1 ]
Raposo, Ana C. [1 ]
Desterro, Joana M. P. [1 ]
Ferreira, Joao [1 ]
de Almeida, Sergio Fernandes [1 ]
机构
[1] Univ Lisbon, Fac Med, Inst Mol Med, P-1699 Lisbon, Portugal
来源
ELIFE | 2014年 / 3卷
关键词
HOMOLOGOUS RECOMBINATION; CHROMATIN RESPONSE; HISTONE H2AX; DAMAGE; PHOSPHORYLATION; ATM; P53; METHYLATION; GENE; MECHANISMS;
D O I
10.7554/eLife.02482
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Histone modifications establish the chromatin states that coordinate the DNA damage response. Here, we show that SETD2, the enzyme that trimethylates histone H3 lysine 36 (H3K36me3), is required for ATM activation upon DNA double-strand breaks (DSBs). Moreover, we find that SETD2 is necessary for homologous recombination repair of DSBs by promoting the formation of RAD51 presynaptic filaments. In agreement, SETD2-mutant clear cell renal cell carcinoma (ccRCC) cells displayed impaired DNA damage signaling. However, despite the persistence of DNA lesions, SETD2-deficient cells failed to activate p53, a master guardian of the genome rarely mutated in ccRCC and showed decreased cell survival after DNA damage. We propose that this novel SETD2-dependent role provides a chromatin bookmarking instrument that facilitates signaling and repair of DSBs. In ccRCC, loss of SETD2 may afford an alternative mechanism for the inactivation of the p53-mediated checkpoint without the need for additional genetic mutations in TP53.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] DNA double-strand break repair in Caenorhabditis elegans
    Bennie B. L. G. Lemmens
    Marcel Tijsterman
    [J]. Chromosoma, 2011, 120 : 1 - 21
  • [32] DNA in motion during double-strand break repair
    Mine-Hattab, Judith
    Rothstein, Rodney
    [J]. TRENDS IN CELL BIOLOGY, 2013, 23 (11) : 529 - 536
  • [33] Current topics in DNA double-strand break repair
    Kobayashi, Junya
    Iwabuchi, Kuniyoshi
    Miyagawa, Kiyoshi
    Sonoda, Eiichiro
    Suzuki, Keiji
    Takata, Minoru
    Tauchi, Hiroshi
    [J]. JOURNAL OF RADIATION RESEARCH, 2008, 49 (02) : 93 - 103
  • [34] Molecular mechanisms of DNA double-strand break repair
    Kanaar, R
    Hoeijmakers, JHJ
    van Gent, DC
    [J]. TRENDS IN CELL BIOLOGY, 1998, 8 (12) : 483 - 489
  • [35] The roles of RNA in DNA double-strand break repair
    Aldo S. Bader
    Ben R. Hawley
    Ania Wilczynska
    Martin Bushell
    [J]. British Journal of Cancer, 2020, 122 : 613 - 623
  • [36] DNA double-strand break repair by homologous recombination
    Dudás, A
    Chovanec, M
    [J]. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2004, 566 (02) : 131 - 167
  • [37] Tails of histones in DNA double-strand break repair
    Bilsland, E
    Downs, JA
    [J]. MUTAGENESIS, 2005, 20 (03) : 153 - 163
  • [38] DNA Double-strand Break Repair in the Context of Chromatin
    Ruebe, C. E.
    Lorat, Y.
    Schanz, S.
    Schuler, N.
    Ruebe, C.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (02): : S23 - S23
  • [39] DNA double-strand break repair by homologous recombination
    van den Bosch, M
    Lohman, PHM
    Pastink, A
    [J]. BIOLOGICAL CHEMISTRY, 2002, 383 (06) : 873 - 892
  • [40] Ubiquitin and the DNA double-strand break repair pathway
    Somaira Nowsheen
    Min Deng
    Zhenkun Lou
    [J]. Genome Instability & Disease, 2020, 1 (2) : 69 - 80