More on Modified Spherical Harmonics

被引:5
|
作者
Leutwiler, Heinz [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Spherical harmonics; Generalized axially symmetric potentials; Modified spherical harmonics;
D O I
10.1007/s00006-019-0990-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modification of the classical theory of spherical harmonics is presented. The space R-d = {(x(1), ... , x(d))} is replaced by the upper half space R-+(d) = {(x(1), ... , x(d)), x(d) > 0}, and the unit sphere Sd-1 in R-d by the unit half sphere S-+(d-1) = {(x(1), ... , x(d)) : x(1)(2) + ... + x(d)(2) = 1, x(d) > 0}. Instead of the Laplace equation Delta h = 0 we shall consider the Weinstein equation x(d)Delta u+ k partial derivative u/x(d) = 0, for k is an element of N. The Euclidean scalar product for functions on Sd-1 will be replaced by a non-Euclidean one for functions on S-+(d-1). It will be shown that in this modified setting all major results from the theory of spherical harmonics stay valid. In case k = d - 2 the modified theory has already been treated by the author.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] ON COMPLEX SPHERICAL HARMONICS
    IKEDA, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1964, 32 (01): : 178 - &
  • [32] The addition theorem for spherical harmonics and monopole harmonics
    Fung, MK
    [J]. CHINESE JOURNAL OF PHYSICS, 2002, 40 (05) : 490 - 495
  • [33] GENERALIZATION OF SPHERICAL HARMONICS
    SHAFER, RE
    [J]. SIAM REVIEW, 1973, 15 (03) : 658 - 663
  • [34] SPHERICAL HARMONICS ON GRASSMANNIANS
    Howe, Roger
    Lee, Soo Teck
    [J]. COLLOQUIUM MATHEMATICUM, 2010, 118 (01) : 349 - 364
  • [35] Spherical Harmonics and the Icosahedron
    Hitchin, Nigel
    [J]. GROUPS AND SYMMETRIES: FROM NEOLITHIC SCOTS TO JOHN MCKAY, 2009, 47 : 215 - 231
  • [36] Spherical harmonics scaling
    Jiaping Wang
    Kun Xu
    Kun Zhou
    Stephen Lin
    Shimin Hu
    Baining Guo
    [J]. The Visual Computer, 2006, 22 : 713 - 720
  • [37] ON THE SYMMETRIES OF SPHERICAL HARMONICS
    ALTMANN, SL
    BRADLEY, CJ
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 255 (1054) : 199 - 215
  • [38] EQUIVALENT SPHERICAL HARMONICS
    SCHMELZER, A
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1977, 11 (04) : 561 - 576
  • [39] CUBIC HARMONICS AS LINEAR COMBINATIONS OF SPHERICAL HARMONICS
    MUGGLI, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1972, 23 (02): : 311 - &
  • [40] Generating Functions for Spherical Harmonics and Spherical Monogenics
    P. Cerejeiras
    U. Kähler
    R. Lávička
    [J]. Advances in Applied Clifford Algebras, 2014, 24 : 995 - 1004