Efficient decomposition of associative algebras over finite fields

被引:16
|
作者
Eberly, W [1 ]
Giesbrecht, M
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[2] Univ Western Ontario, Dept Comp Sci, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jsco.1999.0308
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present new, efficient algorithms for some fundamental computations with finite-dimensional (but not necessarily commutative) associative algebras over finite fields. For a semisimple algebra. U we show how to compute a complete Wedderburn decomposition of U as a direct sum of simple algebras, an isomorphism between each simple component and a full matrix algebra, and a basis for the centre of a. If ill is given by a generating set of matrices in F-mxm, then our algorithm requires about O(m(3)) operations in F, in addition to the cost of factoring a polynomial in F[x] of degree O(m), and the cost of generating a small number of random elements from U. We also show how to compute a complete set of orthogonal primitive idempotents in any associative algebra over a finite field in this same time. (C) 2000 Academic Press.
引用
收藏
页码:441 / 458
页数:18
相关论文
共 50 条
  • [31] On Two-Dimensional Power Associative Algebras Over Algebraically Closed Fields and R
    Ahmed, H.
    Bekbaev, U.
    Rakhimov, I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (01) : 1 - 13
  • [32] On Two-Dimensional Power Associative Algebras Over Algebraically Closed Fields and R
    H. Ahmed
    U. Bekbaev
    I. Rakhimov
    Lobachevskii Journal of Mathematics, 2019, 40 : 1 - 13
  • [33] Lower central series of a free associative algebra over the integers and finite fields
    Bhupatiraju, Surya
    Etingof, Pavel
    Jordan, David
    Kuszmaul, William
    Li, Jason
    JOURNAL OF ALGEBRA, 2012, 372 : 251 - 274
  • [34] ALGORITHM ABOUT DECOMPOSITION OF POLYNOMIALS OVER FINITE-FIELDS
    MIGNOTTE, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (03): : 137 - 139
  • [35] EFFICIENT ENCODINGS TO HYPERELLIPTIC CURVES OVER FINITE FIELDS
    Kashani, Amirmehdi Yazdani
    Daghigh, Hassan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (05): : 673 - 681
  • [36] STRUCTURE OF SOME CLASSES OF SEMISIMPLE GROUP ALGEBRAS OVER FINITE FIELDS
    Makhijani, Neha
    Sharma, Rajendra Kumar
    Srivastava, J. B.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (06) : 1605 - 1614
  • [37] On Four-Dimensional Unital Division Algebras over Finite Fields
    Mashhour Bani-Ata
    Shuaa Aldhafeeri
    Fethi Belgacem
    Mahmoud Laila
    Algebras and Representation Theory, 2015, 18 : 215 - 220
  • [38] Directed pseudo-graphs and lie algebras over finite fields
    Boza, Luis
    Manuel Fedriani, Eugenio
    Nunez, Juan
    Maria Pacheco, Ana
    Trinidad Villar, Maria
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) : 229 - 239
  • [39] Efficient inversion of rational maps over finite fields
    Cafure, Antonio
    Matera, Guillermo
    Waissbein, Ariel
    ALGORITHMS IN ALGEBRAIC GEOMETRY, 2008, 146 : 55 - +
  • [40] Computation of isotopisms of algebras over finite fields by means of graph invariants
    Falcon, O. J.
    Falcon, R. M.
    Nunez, J.
    Pacheco, A. M.
    Villar, M. T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 : 307 - 315