Self-dual gravity

被引:38
|
作者
Krasnov, Kirill [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
self-duality; instantons; quantum gravity; HELICITY AMPLITUDES;
D O I
10.1088/1361-6382/aa65e5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Self-dual gravity is a diffeomorphism invariant theory in four dimensions that describes two propagating polarisations of the graviton and has a negative mass dimension coupling constant. Nevertheless, this theory is not only renormalisable but quantum finite, as we explain. We also collect various facts about self-dual gravity that are scattered across the literature.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Self-dual dyon in dilaton-axion gravity
    Kechkin, O
    Yurova, M
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (06) : 975 - 982
  • [42] From principal chiral model to self-dual gravity
    Plebanski, JF
    Przanowski, M
    GarciaCompean, H
    [J]. MODERN PHYSICS LETTERS A, 1996, 11 (08) : 663 - 673
  • [43] SELF-DUAL FORMULATIONS OF D=3 GRAVITY THEORIES
    DESER, S
    MCCARTHY, J
    [J]. PHYSICS LETTERS B, 1990, 246 (3-4) : 441 - 444
  • [44] T self-dual transverse space and gravity trapping
    Grojean, C
    [J]. PHYSICS LETTERS B, 2000, 479 (1-3) : 273 - 283
  • [45] Double-copying self-dual Yang-Mills theory to self-dual gravity on twistor space
    Borsten, Leron
    Jurco, Branislav
    Kim, Hyungrok
    Macrelli, Tommaso
    Saemann, Christian
    Wolf, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [46] Self-dual gravity and self-dual Yang-Mills theory in the context of the Macdowell-Mansouri formalism
    Nieto, JA
    Socorro, J
    [J]. PHYSICAL REVIEW D, 1999, 59 (04):
  • [47] Topological lattice gravity using self-dual variables
    Zapata, JA
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (10) : 2617 - 2634
  • [48] Self-Dual Dyon in Dilaton-Axion Gravity
    Oleg Kechkin
    Maria Yurova
    [J]. General Relativity and Gravitation, 1998, 30 : 975 - 982
  • [49] Symmetries, currents and conservation laws of self-dual gravity
    Popov, A. D.
    Bordemann, M.
    Roemer, H.
    [J]. Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 385 (1-4):
  • [50] Self-dual and quasi self-dual algebras
    Gerstenhaber, M.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) : 193 - 211