The generalized hyperstability of general linear equations in quasi-Banach spaces

被引:23
|
作者
Nguyen Van Dung [1 ,2 ]
Vo Thi Le Hang [3 ,4 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Dong Thap Univ, Journal Sci, Cao Lanh City, Dong Thap Provi, Vietnam
[4] Dong Thap Univ, Fac Math & Informat Technol Teacher Educ, Cao Lanh City, Dong Thap Provi, Vietnam
关键词
Fixed point; Quasi-Banach space; Hyperstability; General linear equation; CUBIC FUNCTIONAL-EQUATION; STABILITY;
D O I
10.1016/j.jmaa.2018.01.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the hyperstability for the general linear equation in the setting of quasi-Banach spaces. We first extend the fixed point result of Brzdek et al. [5, Theorem 1] in metric spaces to b-metric spaces, in particular to quasi-Banach spaces. Then we use this result to generalize the main results on the hyperstability for the general linear equation in Banach spaces to quasi-Banach spaces. We also show that we can not omit the assumption of completeness in 15, Theorem 1]. As a consequence, we conclude that we need more explanations to replace a normed space by its completion in the proofs of some results in the literature. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 50 条
  • [41] On the Stability of a Generalized Quadratic and Quartic Type Functional Equation in Quasi-Banach Spaces
    M. Eshaghi Gordji
    S. Abbaszadeh
    Choonkil Park
    Journal of Inequalities and Applications, 2009
  • [42] On the Hyers-Ulam-Rassias stability of functional equations in quasi-Banach spaces
    Eskandani, G. Z.
    Vaezi, H.
    Moradlou, F.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 15 (D09): : 1 - 15
  • [43] On the Hyers-Ulam-Rassias stability of functional equations in quasi-Banach spaces
    Eskandani, G.Z.
    Vaezi, H.
    Moradlou, F.
    International Journal of Applied Mathematics and Statistics, 2009, 15 (D09): : 1 - 15
  • [44] Singularities in quasi-Banach spaces with applications to semilinear elliptic equations .2.
    Runst, T
    MATHEMATISCHE NACHRICHTEN, 1997, 184 : 275 - 311
  • [45] Carl's inequality for quasi-Banach spaces
    Hinrichs, Aicke
    Kolleck, Anton
    Vybiral, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (08) : 2293 - 2307
  • [46] QUASI-BANACH SPACES WHICH ARE UNIQUE PREDUAL
    WERNER, E
    MATHEMATISCHE ANNALEN, 1988, 280 (04) : 559 - 563
  • [47] Some remarks on the geometry of quasi-Banach spaces
    Albiac, F
    Leránoz, C
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 61 (3-4): : 403 - 417
  • [48] Approximation of generalized derivation in quasi-Banach algebras
    EL-Fassi, Iz-iddine
    Boutarfass, Jawad
    Oukhtite, Lahcen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (07) : 2447 - 2461
  • [49] Stability of the Frechet Equation in Quasi-Banach Spaces
    Kim, Sang Og
    MATHEMATICS, 2020, 8 (04)
  • [50] On Perfectly Homogeneous Bases in Quasi-Banach Spaces
    Albiac, F.
    Leranoz, C.
    ABSTRACT AND APPLIED ANALYSIS, 2009,