An Approach to Optimal Hyperspectral and Multispectral Signature and Image Fusion for Detecting Hidden Targets on Shorelines

被引:0
|
作者
Bostater, Charles R. [1 ,2 ]
机构
[1] Florida Inst Technol, Coll Engn, Marine Environm Opt Lab, Melbourne, FL 32901 USA
[2] Florida Inst Technol, Coll Engn, Ctr Remote Sensing, Melbourne, FL 32901 USA
来源
关键词
image analysis; target detection; feature detection; calibration; hydrologic optics; airborne sensors; airborne imagery; hyperspectral sensing; multispectral imagery; radiative transfer; subsurface imaging; cameras; oil spills; data fusion; image contrast; derivative spectroscopy; shorelines; fusion protocol; fusion optimization;
D O I
10.1117/12.2196293
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperspectral and multispectral imagery of shorelines collected from airborne and shipborne platforms are used following pushbroom imagery corrections using inertial motion motions units and augmented global positioning data and Kalman filtering. Corrected radiance or reflectance images are then used to optimize synthetic high spatial resolution spectral signatures resulting from an optimized data fusion process. The process demonstrated utilizes littoral zone features from imagery acquired in the Gulf of Mexico region. Shoreline imagery along the Banana River, Florida, is presented that utilizes a technique that makes use of numerically embedded targets in both higher spatial resolution multispectral images and lower spatial resolution hyperspectral imagery. The fusion process developed utilizes optimization procedures that include random selection of regions and pixels in the imagery, and minimizing the difference between the synthetic signatures and observed signatures. The optimized data fusion approach allows detection of spectral anomalies in the resolution enhanced data cubes. Spectral-spatial anomaly detection is demonstrated using numerically embedded line targets within actual imagery. The approach allows one to test spectral signature anomaly detection and to identify features and targets. The optimized data fusion techniques and software allows one to perform sensitivity analysis and optimization in the singular value decomposition model building process and the 2-D Butterworth cutoff frequency and order numerical selection process. The data fusion "synthetic imagery" forms a basis for spectral-spatial resolution enhancement for optimal band selection and remote sensing algorithm development within "spectral anomaly areas". Sensitivity analysis demonstrates the data fusion methodology is most sensitive to (a) the pixels and features used in the SVD model building process and (b) the 2-D Butterworth cutoff frequency optimized by application of K-S nonparametric test. The image fusion protocol is transferable to sensor data acquired from other platforms, including moving platforms as demonstrated.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Deep Hyperspectral and Multispectral Image Fusion With Inter-Image Variability
    Wang, Xiuheng
    Borsoi, Ricardo Augusto
    Richard, Cedric
    Chen, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] An Integrated Approach to Registration and Fusion of Hyperspectral and Multispectral Images
    Zhou, Yuan
    Rangarajan, Anand
    Gader, Paul D.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3020 - 3033
  • [23] Mixed Noise-Oriented Hyperspectral and Multispectral Image Fusion
    Fu, Xiyou
    Liang, Hong
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Resolution Enhancement Optimizations for Hyperspectral and Multispectral Synthetic Image Fusion
    Bostater, Charles R.
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2012, 2012, 8532
  • [25] Simulated JWST Data Sets for Multispectral and Hyperspectral Image Fusion
    Guilloteau, Claire
    Oberlin, Thomas
    Berne, Olivier
    Habart, Emilie
    Dobigeon, Nicolas
    ASTRONOMICAL JOURNAL, 2020, 160 (01):
  • [26] Sparse Tensor Prior for Hyperspectral, Multispectral, and Panchromatic Image Fusion
    Xin Tian
    Wei Zhang
    Dian Yu
    Jiayi Ma
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (01) : 284 - 286
  • [27] Learning the external and internal priors for multispectral and hyperspectral image fusion
    Shutao LI
    Renwei DIAN
    Haibo LIU
    Science China(Information Sciences), 2023, 66 (04) : 64 - 78
  • [28] Pyramid Fully Convolutional Network for Hyperspectral and Multispectral Image Fusion
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1549 - 1558
  • [29] HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION BASED ON DEEP ATTENTION NETWORK
    Yang, Qing
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [30] HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion
    Li, Kun
    Zhang, Wei
    Yu, Dian
    Tian, Xin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 30 - 44