Adaptive Hierarchical Probabilistic Model Using Structured Variational Inference for Point Set Registration

被引:8
|
作者
He, Qiqi [1 ,2 ]
Zhou, Jie [1 ,2 ]
Xu, Shijin [1 ,2 ]
Yang, Yang [1 ,2 ]
Yu, Rui [1 ,2 ]
Liu, Yuhe [1 ,2 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Engn Res Ctr GIS Technol Western China, Natl Minist Educ, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical probabilisticmodel (HPM); hesitant fuzzy Einstein weighted averaging (HFEWA); nonrigid point set registration; symmetric cross entropy; variational Bayesian (VB); ROBUST; ALGORITHM; MIXTURE;
D O I
10.1109/TFUZZ.2020.2974433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point set registration plays an important role in computer vision and pattern recognition. In this article, we propose an adaptive hierarchical probabilisticmodel (HPM) under a variational Bayesian (VB) framework for point set registration problem. The main contributions of this article are given as follows. First, a dynamic putative inlier estimation strategy is proposed through the hesitant fuzzy Einstein weighted averaging based membership calculation and component estimation using symmetric cross entropy. Second, a student-t mixture model based HPM is designed to solve outlier and occlusion problems during registration. Third, a VB-based transformation updating is proposed to construct a robust and adjustable transformation for effectively fitting target point set while further resisting outliers. The performances of the proposed method in point set and image registrations against 11 state-of-the-art methods are evaluated, in which our method gives the best performance in most scenarios.
引用
收藏
页码:2784 / 2798
页数:15
相关论文
共 50 条
  • [21] Robust Brain Registration Using Adaptive Probabilistic Atlas
    Ide, Jaime
    Chen, Rong
    Shen, Dinggang
    Herskovits, Edward H.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 1041 - 1049
  • [22] Aligning the Dissimilar: A Probabilistic Method for Feature-Based Point Set Registration
    Danelljan, Martin
    Meneghetti, Giulia
    Khan, Fahad Shahbaz
    Felsberg, Michael
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 247 - 252
  • [23] Probabilistic model updating of civil structures with a decentralized variational inference approach
    Ni, Pinghe
    Han, Qiang
    Du, Xiuli
    Fu, Jinlong
    Xu, Kun
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [24] A NOVEL PROBABILISTIC SIMULTANEOUS SEGMENTATION AND REGISTRATION USING LEVEL SET
    Aslan, Melih S.
    Mostafa, Eslam
    Abdelmunim, Hossam
    Shalaby, Ahmed
    Farag, Aly A.
    Arnold, Ben
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [25] An optimal probabilistic graphical model for point set matching
    Caetano, TS
    Caelli, T
    Barone, DAC
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 162 - 170
  • [26] Probabilistic graphical model for robust point set matching
    Qu, Han-Bing
    Wang, Jia-Qiang
    Li, Bin
    Wang, Song-Tao
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (04): : 694 - 710
  • [27] Probabilistic Point Set Matching with Gaussian Mixture Model
    Qu, Han-Bing
    Wang, Jia-Qiang
    Li, Bin
    Yue, Feng
    Jin, Wei
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2100 - 2107
  • [28] Adaptive REST Applications via Model Inference and Probabilistic Model Checking
    Ghezzi, Carlo
    Pezze, Mauro
    Tamburrelli, Giordano
    2013 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2013), 2013, : 1376 - 1382
  • [29] An Adaptive Data Representation for Robust Point-Set Registration and Merging
    Campbell, Dylan
    Petersson, Lars
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4292 - 4300
  • [30] Hierarchical Neural Topic Model with Embedding Cluster and Neural Variational Inference
    Wang, Ningjing
    Wang, Deqing
    Jiang, Ting
    Du, Chenguang
    Fang, Chuyu
    Zhuang, Fuzhen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 936 - 944