Adaptive Hierarchical Probabilistic Model Using Structured Variational Inference for Point Set Registration

被引:8
|
作者
He, Qiqi [1 ,2 ]
Zhou, Jie [1 ,2 ]
Xu, Shijin [1 ,2 ]
Yang, Yang [1 ,2 ]
Yu, Rui [1 ,2 ]
Liu, Yuhe [1 ,2 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Engn Res Ctr GIS Technol Western China, Natl Minist Educ, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical probabilisticmodel (HPM); hesitant fuzzy Einstein weighted averaging (HFEWA); nonrigid point set registration; symmetric cross entropy; variational Bayesian (VB); ROBUST; ALGORITHM; MIXTURE;
D O I
10.1109/TFUZZ.2020.2974433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point set registration plays an important role in computer vision and pattern recognition. In this article, we propose an adaptive hierarchical probabilisticmodel (HPM) under a variational Bayesian (VB) framework for point set registration problem. The main contributions of this article are given as follows. First, a dynamic putative inlier estimation strategy is proposed through the hesitant fuzzy Einstein weighted averaging based membership calculation and component estimation using symmetric cross entropy. Second, a student-t mixture model based HPM is designed to solve outlier and occlusion problems during registration. Third, a VB-based transformation updating is proposed to construct a robust and adjustable transformation for effectively fitting target point set while further resisting outliers. The performances of the proposed method in point set and image registrations against 11 state-of-the-art methods are evaluated, in which our method gives the best performance in most scenarios.
引用
收藏
页码:2784 / 2798
页数:15
相关论文
共 50 条
  • [1] Point set registration with mixture framework and variational inference
    Ma, Xinke
    Xu, Shijin
    Zhou, Jie
    Yang, Qinglu
    Yang, Yang
    Yang, Kun
    Ong, Sim Heng
    PATTERN RECOGNITION, 2020, 104 (104)
  • [2] Non-Rigid Point Set Registration Based on Variational Bayes Hierarchical Probability Model
    He Q.-Q.
    Lin G.
    Zhou J.
    Yang Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (09): : 1866 - 1887
  • [3] Generalized Point Set Registration With Fuzzy Correspondences Based on Variational Bayesian Inference
    Zhang, Ang
    Min, Zhe
    Zhang, Zhengyan
    Meng, Max Q-H
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) : 1529 - 1540
  • [4] Variational Bayesian Point Set Registration
    Jiang, Xiaoyue
    Yu, Hang
    Hoy, Michael
    Dauwels, Justin
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [5] Adaptive Non-Rigid Point Set Registration Based on Variational Bayesian
    Yang L.
    Tian Z.
    Wen J.
    Yan W.
    2018, Northwestern Polytechnical University (36): : 942 - 948
  • [6] Robust probability model based on variational Bayes for point set registration
    Cao, Hualong
    Wang, Haifeng
    Zhang, Ni
    Yang, Yang
    Zhou, Ziyun
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [7] Robust Variational Bayesian Point Set Registration
    Zhou, Jie
    Ma, Xinke
    Liang, Li
    Yang, Yang
    Xu, Shijin
    Liu, Yuhe
    Ong, Sim Heng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9904 - 9913
  • [8] Registration Loss Learning for Deep Probabilistic Point Set Registration
    Lawin, Felix Jaremo
    Forssen, Per-Erik
    Proceedings - 2020 International Conference on 3D Vision, 3DV 2020, 2020, : 563 - 572
  • [9] Registration Loss Learning for Deep Probabilistic Point Set Registration
    Lawin, Felix Jaremo
    Forssen, Per-Erik
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 563 - 572
  • [10] Density Adaptive Point Set Registration
    Lawin, Felix Jaremo
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Forssen, Per-Erik
    Felsberg, Michael
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3829 - 3837