Sodium titanate cuboid as advanced anode material for sodium ion batteries

被引:49
|
作者
Zhang, Yan [1 ]
Hou, Hongshuai [1 ]
Yang, Xuming [1 ]
Chen, Jun [1 ]
Jing, Mingjun [1 ]
Wu, Zhibin [1 ]
Jia, Xinnan [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
基金
湖南省自然科学基金; 中国国家自然科学基金;
关键词
Sodium titanate cuboid; Anode; Sodium-ion batteries; Binders; LI-ION; NEGATIVE ELECTRODES; NA; LITHIUM; BINDER; STORAGE; MICROSPHERES; STABILITY; MECHANISM;
D O I
10.1016/j.jpowsour.2015.11.101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium titanate (Na2Ti6O13) cuboid is successfully prepared and employed for anode electrode materials in sodium -ion batteries (SIBs). Their sodium storage properties are presented by undertaking polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC) as different binders. At a current density of 0.1 C, the sodium titanate cuboid with CMC and PVDF exhibits discharge capacity of 269.5 mAh g(-1) and 251.0 mAh g(-1), respectively. At the 200th charge/discharge cycle, the reserved discharge capacity for Sodium titanate cuboid electrode with CMC binder is 173.6 mAh g(-1), amounting to a capacity retention of 94.4%, much higher than that employing PVDF as binder (the discharge capacity of 69.3 mAh g(-1) and the capacity retention of 54.1%). The rate capability test and the Coulombic efficiency data also manifest that the Sodium titanate cuboid utilizing CMC as binder is superior to the ones with PVDF. These enhanced electrochemical performance mainly derive from the strong cohesive strength of CMC binder and the swellability of PVDF binder, verifying the importance of a binder to the optimization of sodium storage behavior. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 50 条
  • [31] Mixed Sodium Titanate as an Anode for Sodium-Ion Battery
    Cech, O.
    Vanysek, P.
    Chladil, L.
    Castkova, K.
    17TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2016), 2016, 74 (01): : 331 - 337
  • [32] Hollow bismuth ferrite combined graphene as advanced anode material for sodium-ion batteries
    Ding, Xuli
    Liu, Yi
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (02) : 153 - 159
  • [33] Hollow bismuth ferrite combined graphene as advanced anode material for sodium-ion batteries
    Xuli Ding
    Yi Liu
    Progress in Natural Science:Materials International, 2020, 30 (02) : 153 - 159
  • [34] Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries
    Li, Fei
    Ma, Jingyao
    Ren, Haijing
    Wang, Hui
    Wang, Gang
    MATERIALS LETTERS, 2017, 206 : 132 - 135
  • [35] Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries
    Wang, Xuefeng
    Li, Yejing
    Gao, Yurui
    Wang, Zhaoxiang
    Chen, Liquan
    NANO ENERGY, 2015, 13 : 687 - 692
  • [36] Ionic-conductive sodium titanate to boost sodium-ion transport kinetics of hard carbon anode in sodium-ion batteries
    Li, Fan
    Gong, Hao
    Zhang, Yanlei
    Liu, Xinyu
    Jiang, Zhenming
    Chen, Lian
    Huang, Jianying
    Zhang, Yanyan
    Jiang, Yinzhu
    Chen, Binmeng
    Tang, Yuxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 981
  • [37] Size Effect on Electrochemical Performance of Sodium Terephthalate as Anode Material for Sodium-Ion Batteries
    Li, Yi
    Hu, Xianfei
    Tang, Haoqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (07): : 7175 - 7182
  • [38] Biphenylene Nanotube: A Promising Anode Material for Sodium-Ion Batteries
    Vafaee, Mohsen
    Moghaddam, Maryam Farajikhah
    Nasrollahpour, Mokhtar
    ADVANCED MATERIALS INTERFACES, 2023, 10 (13)
  • [39] FeWO4: An Anode Material for Sodium-Ion Batteries
    Wang, Wei
    Xiong, Weiyi
    Sun, He
    Jiao, Shuqiang
    TMS 2014 SUPPLEMENTAL PROCEEDINGS, 2014, : 899 - 905
  • [40] Polycrystalline zinc stannate as an anode material for sodium-ion batteries
    Wang, Luyuan Paul
    Zhao, Yi
    Wei, Chao
    Wong, Chuiling
    Srinivasan, Madhavi
    Xu, Zhichuan J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (26) : 14033 - 14038