This paper investigates optimal designs for mixture experiments when there is uncertainty as to whether a polynomial regression model of degree one or two is appropriate. Three groups of novel results are presented: (i) a complete class of designs relative to certain mixed design criteria, (ii) model-robust D- and A-optimal designs, (iii) D- and A-optimal designs with maximin efficiencies under variation of the design criterion.
机构:
Katholieke Univ Leuven, Fac Business & Econ, Louvain, BelgiumKatholieke Univ Leuven, Fac Business & Econ, Louvain, Belgium
Yu, Jie
Goos, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Antwerp, Fac Appl Econ, B-2020 Antwerp, BelgiumKatholieke Univ Leuven, Fac Business & Econ, Louvain, Belgium
Goos, Peter
Vandebroek, Martina
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Fac Business & Econ, Louvain, Belgium
Leuven Stat Res Ctr, Louvain, BelgiumKatholieke Univ Leuven, Fac Business & Econ, Louvain, Belgium
机构:
Univ Burdwan, Dept Stat, Burdwan 713104, W Bengal, IndiaPenn State Univ, Dept Stat, University Pk, PA 16802 USA
Das, Rabindra Nath
Lin, Dennis Kj.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USA
Renmin Univ, Sch Stat, Beijing, Peoples R ChinaPenn State Univ, Dept Stat, University Pk, PA 16802 USA