Cluster formation in fluids with competing short-range and long-range interactions

被引:59
|
作者
Sweatman, Martin B. [1 ]
Fartaria, Rui [1 ]
Lue, Leo [2 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Mat & Proc, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Univ Strathclyde, Dept Chem & Proc Engn, Glasgow G1 1XJ, Lanark, Scotland
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 12期
关键词
CELL HEMOGLOBIN POLYMERS; EQUILIBRIUM CLUSTERS; LYSOZYME SOLUTIONS; MICELLE FORMATION; PROTEIN SOLUTIONS; PHASE-SEPARATION; GAS-ADSORPTION; ACTIVE CARBONS; NUCLEATION; MODEL;
D O I
10.1063/1.4869109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the low density behaviour of fluids that interact through a short-ranged attraction together with a long-ranged repulsion (SALR potential) by developing a molecular thermodynamic model. The SALR potential is a model of effective solute interactions where the solvent degrees of freedom are integrated-out. For this system, we find that clusters form for a range of interaction parameters where attractive and repulsive interactions nearly balance, similar to micelle formation in aqueous surfactant solutions. We focus on systems for which equilibrium behaviour and liquid-like clusters (i.e., droplets) are expected, and find in addition a novel coexistence between a low density cluster phase and a high density cluster phase within a very narrow range of parameters. Moreover, a simple formula for the average cluster size is developed. Based on this formula, we propose a nonclassical crystal nucleation pathway whereby macroscopic crystals are formed via crystal nucleation within microscopic precursor droplets. We also perform large-scale Monte Carlo simulations, which demonstrate that the cluster fluid phase is thermodynamically stable for this system. (c) 2014 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Modulation of Surface Charge Transfer through Competing Long-Range Repulsive versus Short-Range Attractive Interactions
    Fraxedas, J.
    Garcia-Gil, S.
    Monturet, S.
    Lorente, N.
    Fernandez-Torrente, I.
    Franke, K. J.
    Pascual, J. I.
    Vollmer, A.
    Blum, R. -P.
    Koch, N.
    Ordejon, P.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (38): : 18640 - 18648
  • [32] PROTEIN FOLDING - ROLE OF SHORT-RANGE, MEDIUM-RANGE, AND LONG-RANGE INTERACTIONS
    SCHERAGA, HA
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1976, 172 (SEP3): : 7 - 7
  • [33] CONSEQUENCES OF REGULATION - SHORT-RANGE ... LONG-RANGE
    PUTNAM, BR
    [J]. CHEMICAL ENGINEERING, 1977, 84 (12) : 158 - 161
  • [34] LONG-RANGE AND SHORT-RANGE PRICE FIXING
    HALL, CG
    [J]. SVENSK PAPPERSTIDNING-NORDISK CELLULOSA, 1975, 78 (09): : 318 - 320
  • [35] LONG-RANGE AND SHORT-RANGE ORDER IN NIPT
    GREENHOLZ, M
    KIDRON, A
    SHIMONY, U
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1974, 7 (FEB1): : 83 - 86
  • [36] The Crossover Region Between Long-Range and Short-Range Interactions for the Critical Exponents
    Brezin, E.
    Parisi, G.
    Ricci-Tersenghi, F.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (4-5) : 855 - 868
  • [37] ISING MODEL WITH A LONG-RANGE INTERACTION IN PRESENCE OF RESIDUAL SHORT-RANGE INTERACTIONS
    BAKER, GA
    [J]. PHYSICAL REVIEW, 1963, 130 (04): : 1406 - +
  • [38] Separation of long-range and short-range interactions in Rydberg states of diatomic molecules
    Kay, Jeffrey J.
    Coy, Stephen L.
    Petrovic, Vladimir S.
    Wong, Bryan M.
    Field, Robert W.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (19):
  • [39] Short-range exchange and long-range dipole interactions in a triangular planar model
    Rastelli, E
    Regina, S
    Tassi, A
    [J]. PHYSICAL REVIEW B, 2003, 67 (09):
  • [40] The Crossover Region Between Long-Range and Short-Range Interactions for the Critical Exponents
    E. Brezin
    G. Parisi
    F. Ricci-Tersenghi
    [J]. Journal of Statistical Physics, 2014, 157 : 855 - 868