Unscented Kalman Filtering on Manifolds for AUV Navigation - Experimental Results

被引:1
|
作者
Krauss, Stephen T. [1 ]
Stilwell, Daniel J. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
来源
关键词
D O I
10.1109/OCEANS47191.2022.9977251
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work, we present an aided inertial navigation system for an autonomous underwater vehicle (AUV) using an unscented Kalman filter on manifolds (UKF-M). The inertial navigation estimate is aided by a Doppler velocity log (DVL), depth sensor, acoustic range and, while on the surface, GPS. The sensor model for each navigation sensor on the AUV is explicitly described, including compensation for lever arm offsets between the IMU and each sensor. Additionally, an outlier rejection step is proposed to reject measurement outliers that would degrade navigation performance. The UKF-M for AUV navigation is implemented for real-time navigation on the Virginia Tech 690 AUV and validated in the field. Finally, by post-processing the navigation sensor data, we show experimentally that the UKF-M is able to converge to the correct heading in the presence of arbitrarily large initial heading error.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A real-time unscented Kalman filter on manifolds for challenging AUV navigation
    Cantelobre, Theophile
    Chahbazian, Clement
    Croux, Arnaud
    Bonnabel, Silvere
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 2309 - 2316
  • [2] Unscented Kalman Filtering on Riemannian Manifolds
    Søren Hauberg
    François Lauze
    Kim Steenstrup Pedersen
    [J]. Journal of Mathematical Imaging and Vision, 2013, 46 : 103 - 120
  • [3] Unscented Kalman Filtering on Riemannian Manifolds
    Hauberg, Soren
    Lauze, Francois
    Pedersen, Kim Steenstrup
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 103 - 120
  • [4] UNSCENTED KALMAN FILTERING FOR AUTONOMOUS UNDERWATER NAVIGATION
    Allotta, Benedetto
    Caiti, Andrea
    Costanzi, Riccardo
    Fanelli, Francesco
    Fenucci, Davide
    Meli, Enrico
    Ridolfi, Alessandro
    [J]. COMPUTATIONAL METHODS IN MARINE ENGINEERING VI (MARINE 2015), 2015, : 1150 - 1159
  • [5] Augmented state Kalman filtering for AUV navigation
    Garcia, R
    Puig, J
    Ridao, P
    Cufi, X
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 4010 - 4015
  • [6] A new AUV navigation system exploiting unscented Kalman filter
    Allotta, B.
    Caiti, A.
    Costanzi, R.
    Fanelli, F.
    Fenucci, D.
    Meli, E.
    Ridolfi, A.
    [J]. OCEAN ENGINEERING, 2016, 113 : 121 - 132
  • [7] Adaptive Robust Unscented Kalman Filter for AUV Acoustic Navigation
    Wang, Junting
    Xu, Tianhe
    Wang, Zhenjie
    [J]. SENSORS, 2020, 20 (01)
  • [8] A Code for Unscented Kalman Filtering on Manifolds (UKF-M)
    Brossard, Martin
    Barrau, Axel
    Bonnabel, Silvere
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5701 - 5708
  • [9] A Matching-Unscented Kalman Filtering for Gravity Aided Navigation
    Wu, Lin
    Tian, Xin
    Ma, Hong
    Tian, Jinwen
    [J]. MIPPR 2011: AUTOMATIC TARGET RECOGNITION AND IMAGE ANALYSIS, 2011, 8003
  • [10] Sea currents estimation during AUV navigation using Unscented Kalman Filter
    Allotta, Benedetto
    Costanzi, Riccardo
    Fanelli, Francesco
    Monni, Niccolo
    Paolucci, Libero
    Ridolfi, Alessandro
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 13668 - 13673