A Code for Unscented Kalman Filtering on Manifolds (UKF-M)

被引:0
|
作者
Brossard, Martin [1 ]
Barrau, Axel [2 ]
Bonnabel, Silvere [1 ]
机构
[1] PSL Res Univ, Ctr Robot, MINES ParisTech, 60 Blvd St Michel, F-75006 Paris, France
[2] Safran Tech, Grp Safran, Rue Jeunes Bois Chateaufort, F-78772 Magny Les Hameaux, France
关键词
LIE-GROUPS; ODOMETRY;
D O I
10.1109/icra40945.2020.9197489
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present paper introduces a novel methodology for Unscented Kalman Filtering (UKF) on manifolds that extends previous work by the authors on UKF on Lie groups. Beyond filtering performance, the main interests of the approach are its versatility, as the method applies to numerous state estimation problems, and its simplicity of implementation for practitioners not being necessarily familiar with manifolds and Lie groups. We have developed the method on two independent open-source Python and Matlab frameworks we call UKF-M, for quickly implementing and testing the approach. The online repositories contain tutorials, documentation, and various relevant robotics examples that the user can readily reproduce and then adapt, for fast prototyping and benchmarking. The code is available at https://github.com/CAOR-MINES-ParisTech/ukfm.
引用
收藏
页码:5701 / 5708
页数:8
相关论文
共 50 条
  • [1] Unscented Kalman Filtering on Riemannian Manifolds
    Søren Hauberg
    François Lauze
    Kim Steenstrup Pedersen
    [J]. Journal of Mathematical Imaging and Vision, 2013, 46 : 103 - 120
  • [2] Unscented Kalman Filtering on Riemannian Manifolds
    Hauberg, Soren
    Lauze, Francois
    Pedersen, Kim Steenstrup
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 103 - 120
  • [3] Unscented Kalman Filtering on Manifolds for AUV Navigation - Experimental Results
    Krauss, Stephen T.
    Stilwell, Daniel J.
    [J]. 2022 OCEANS HAMPTON ROADS, 2022,
  • [4] Robust M–M unscented Kalman filtering for GPS/IMU navigation
    Cheng Yang
    Wenzhong Shi
    Wu Chen
    [J]. Journal of Geodesy, 2019, 93 : 1093 - 1104
  • [5] Truncated Unscented Kalman Filtering
    Garcia-Fernandez, Angel F.
    Morelande, Mark R.
    Grajal, Jesus
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) : 3372 - 3386
  • [6] Robust M-M unscented Kalman filtering for GPS/IMU navigation
    Yang, Cheng
    Shi, Wenzhong
    Chen, Wu
    [J]. JOURNAL OF GEODESY, 2019, 93 (08) : 1093 - 1104
  • [7] Sequence unscented Kalman filtering algorithm
    Li, Hui-ping
    Xu, De-min
    jun, Jiang Li
    Zhang, Fu-bin
    [J]. ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 1374 - 1378
  • [8] Unscented Kalman Filtering on Lie Groups
    Brossard, Martin
    Bonnabel, Silvere
    Condomines, Jean-Philippe
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2485 - 2491
  • [9] Unscented Kalman filtering of a simulated pH system
    Romanenko, A
    Santos, LO
    Afonso, PAFNA
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (23) : 7531 - 7538
  • [10] Unscented Kalman filtering in the additive noise case
    LIU YeYU AnXiZHU JuBo LIANG DianNong College of Electronic Science and EngineeringNational University of Defense TechnologyChangsha China Science CollegeNational University of Defense TechnologyChangsha China
    [J]. Science China(Technological Sciences), 2010, 53 (04) : 929 - 941