A Novel State Estimation Approach Based on Adaptive Unscented Kalman Filter for Electric Vehicles

被引:18
|
作者
Li, Jiabo [1 ]
Ye, Min [1 ]
Jiao, Shengjie [1 ]
Meng, Wei [1 ]
Xu, Xinxin [1 ]
机构
[1] Changan Univ, Highway Maintenance Equipment Natl Engn Lab, Xian 710064, Peoples R China
关键词
State of charge; Estimation; Mathematical model; Batteries; Voltage measurement; Current measurement; Kalman filters; State-of-charge (SOC); adaptive unscented Kalman filter (AUKF); terminal voltage; least squares support vector machine (LSSVM); OF-CHARGE ESTIMATION; LI-ION BATTERIES; EXPERIMENTAL VALIDATION; POLYMER BATTERY; MODEL; PARAMETER; PACK;
D O I
10.1109/ACCESS.2020.3030260
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately estimating the state-of-charge (SOC) of battery is of particular importance for real-time monitoring and safety control in electric vehicles. To obtain better SOC estimation accuracy, a joint modeling method based on adaptive unscented Kalman filter(AUKF) and least-squares support vector machine(LSSVM) is proposed. This article improves the accuracy of SOC estimation from four aspects. Firstly, the nonlinear relationship between SOC, current, and voltage is established by LSSVM. Secondly, a novel voltage estimation method based on improved LSSVM is proposed. Thirdly, the measurement equation of the novel AUKF is created by the improved LSSVM. Finally, the effectiveness of the proposed model is verified under different driving conditions. The comparison results show that the model can improve the accuracy of voltage and SOC estimation, and the SOC estimation error is controlled within 2%.
引用
收藏
页码:185629 / 185637
页数:9
相关论文
共 50 条
  • [21] Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
    Sun, Fengchun
    Hu, Xiaosong
    Zou, Yuan
    Li, Siguang
    ENERGY, 2011, 36 (05) : 3531 - 3540
  • [22] State of Charge Estimation Algorithm Based on Fractional-Order Adaptive Extended Kalman Filter and Unscented Kalman Filter
    Liu, Weijie
    Zhou, Hongliang
    Tang, Zeqiang
    Wang, Tianxiang
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)
  • [23] LiFePO4 Battery Pack Capacity Estimation for Electric Vehicles Based on Unscented Kalman Filter
    Zhao, Lei
    Xu, Guoqing
    Li, Weimin
    Taimoor, Zahid
    Song, Zhibin
    2013 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2013, : 301 - 305
  • [24] Generalizing the Unscented Kalman Filter for State Estimation
    Butler, Quade
    Hilal, Waleed
    Sicard, Brett
    Ziada, Youssef
    Gadsden, S. Andrew
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII, 2023, 12547
  • [25] Unscented Kalman filter for vehicle state estimation
    Antonov, S.
    Fehn, A.
    Kugi, A.
    VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) : 1497 - 1520
  • [26] A Method for State of Charge and State of Health Estimation of LithiumBatteries Based on an Adaptive Weighting Unscented Kalman Filter
    Fang, Fengyuan
    Ma, Caiqing
    Ji, Yan
    ENERGIES, 2024, 17 (09)
  • [27] Information Fusion for State Estimation of Power Battery in Electric Vehicle Based on Unscented Kalman Filter
    Zheng, Hongyu
    Zong, Changfu
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 975 - 978
  • [28] An improved unscented Kalman filter based dynamic state estimation algorithm for electric distribution Systems
    Ahmad, Fiaz
    Rashid, Kabir Muhammad Abdul
    Rasool, Akhtar
    Ozsoy, Esref Emre
    Sabanovic, Asif
    Elitas, Meltem
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2017, 36 (04) : 1220 - 1236
  • [29] State of charge estimation forlithium-ionbattery based on an intelligent adaptive unscented Kalman filter
    Sun, Daoming
    Yu, Xiaoli
    Zhang, Cheng
    Wang, Chongming
    Huang, Rui
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11199 - 11218
  • [30] Dynamic State Estimation of Power Systems with Uncertainties Based on Robust Adaptive Unscented Kalman Filter
    Hou, Dongchen
    Sun, Yonghui
    Wang, Jianxi
    Zhang, Linchuang
    Wang, Sen
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2023, 11 (04) : 1065 - 1074