A Novel State Estimation Approach Based on Adaptive Unscented Kalman Filter for Electric Vehicles

被引:18
|
作者
Li, Jiabo [1 ]
Ye, Min [1 ]
Jiao, Shengjie [1 ]
Meng, Wei [1 ]
Xu, Xinxin [1 ]
机构
[1] Changan Univ, Highway Maintenance Equipment Natl Engn Lab, Xian 710064, Peoples R China
关键词
State of charge; Estimation; Mathematical model; Batteries; Voltage measurement; Current measurement; Kalman filters; State-of-charge (SOC); adaptive unscented Kalman filter (AUKF); terminal voltage; least squares support vector machine (LSSVM); OF-CHARGE ESTIMATION; LI-ION BATTERIES; EXPERIMENTAL VALIDATION; POLYMER BATTERY; MODEL; PARAMETER; PACK;
D O I
10.1109/ACCESS.2020.3030260
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately estimating the state-of-charge (SOC) of battery is of particular importance for real-time monitoring and safety control in electric vehicles. To obtain better SOC estimation accuracy, a joint modeling method based on adaptive unscented Kalman filter(AUKF) and least-squares support vector machine(LSSVM) is proposed. This article improves the accuracy of SOC estimation from four aspects. Firstly, the nonlinear relationship between SOC, current, and voltage is established by LSSVM. Secondly, a novel voltage estimation method based on improved LSSVM is proposed. Thirdly, the measurement equation of the novel AUKF is created by the improved LSSVM. Finally, the effectiveness of the proposed model is verified under different driving conditions. The comparison results show that the model can improve the accuracy of voltage and SOC estimation, and the SOC estimation error is controlled within 2%.
引用
收藏
页码:185629 / 185637
页数:9
相关论文
共 50 条
  • [1] State Parameter Estimation of Intelligent Vehicles Based on an Adaptive Unscented Kalman Filter
    Wang, Yu
    Li, Yushan
    Zhao, Ziliang
    ELECTRONICS, 2023, 12 (06)
  • [2] Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter
    Bo Li
    Shaoyi Bei
    Neural Computing and Applications, 2019, 31 : 8171 - 8183
  • [3] Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter
    Li, Bo
    Bei, Shaoyi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 8171 - 8183
  • [4] Vehicle State Estimation Based on Adaptive Fading Unscented Kalman Filter
    Liu, Yingjie
    Cui, Dawei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [5] A novel adaptive unscented Kalman filter for nonlinear estimation
    Jiang, Zhe
    Song, Qi
    He, Yuqing
    Han, Jianda
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5805 - +
  • [6] State Estimation of Nonlinear Systems Using Novel Adaptive Unscented Kalman Filter
    Jargani, Lotfollah
    Shahbazian, Mehdi
    Salahshoor, Karim
    Fathabadi, Vahid
    ICET: 2009 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2009, : 124 - 129
  • [7] A novel battery state estimation model based on unscented Kalman filter
    Jiabo Li
    Min Ye
    Kangping Gao
    Shengjie Jiao
    Xinxin Xu
    Ionics, 2021, 27 : 2673 - 2683
  • [8] A novel battery state estimation model based on unscented Kalman filter
    Li, Jiabo
    Ye, Min
    Gao, Kangping
    Jiao, Shengjie
    Xu, Xinxin
    IONICS, 2021, 27 (06) : 2673 - 2683
  • [9] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [10] An Enhanced Adaptive Unscented Kalman Filter for Vehicle State Estimation
    Zhang, Yingjie
    Li, Ming
    Zhang, Ying
    Hu, Zuolei
    Sun, Qingshuai
    Lu, Biliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71