Partially linear single index models for repeated measurements

被引:23
|
作者
Ma, Shujie [1 ]
Liang, Hua [2 ]
Tsai, Chih-Ling [3 ]
机构
[1] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Consistency; Model selection; Oracle estimator; Polynomial spline; Profile principle; Quadratic inference function; SCAD; QUADRATIC INFERENCE FUNCTIONS; GENERALIZED ESTIMATING EQUATIONS; VARYING-COEFFICIENT MODELS; PANEL-DATA MODELS; LONGITUDINAL DATA; SEMIPARAMETRIC ESTIMATION; REGRESSION-MODELS; CLUSTERED DATA; LIKELIHOOD ESTIMATION; PROFILE LIKELIHOOD;
D O I
10.1016/j.jmva.2014.06.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study the estimations of partially linear single-index models (PLSiM) with repeated measurements. Specifically, we approximate the nonparametric function by the polynomial spline, and then employ the quadratic inference function (QIF) together with profile principle to derive the QIF-based estimators for the linear coefficients. The asymptotic normality of the resulting linear coefficient estimators and the optimal convergence rate of the nonparametric function estimate are established. In addition, we employ a penalized procedure to simultaneously select significant variables and estimate unknown parameters. The resulting penalized QIF estimators are shown to have the oracle property, and Monte Carlo studies support this finding. An empirical example is also presented to illustrate the usefulness of penalized estimators. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:354 / 375
页数:22
相关论文
共 50 条
  • [1] Separation of linear and index covariates in partially linear single-index models
    Lian, Heng
    Liang, Hua
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 56 - 70
  • [2] On extended partially linear single-index models
    Xia, YC
    Tong, H
    Li, WK
    [J]. BIOMETRIKA, 1999, 86 (04) : 831 - 842
  • [3] Generalized partially linear single-index models
    Carroll, RJ
    Fan, JQ
    Gijbels, I
    Wand, MP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 477 - 489
  • [4] ESTIMATION FOR SINGLE-INDEX AND PARTIALLY LINEAR SINGLE-INDEX INTEGRATED MODELS
    Dong, Chaohua
    Gao, Jiti
    Tjostheim, Dag
    [J]. ANNALS OF STATISTICS, 2016, 44 (01): : 425 - 453
  • [5] Tests for nonparametric parts on partially linear single index models
    Ri-quan ZHANG Department of Statistics
    Department of Mathematics
    [J]. Science China Mathematics, 2007, (03) : 439 - 449
  • [6] Inferences for extended partially linear single-index models
    Zijuan Chen
    Suojin Wang
    [J]. TEST, 2023, 32 : 602 - 622
  • [7] Tests for nonparametric parts on partially linear single index models
    Ri-quan Zhang
    [J]. Science in China Series A: Mathematics, 2007, 50 : 439 - 449
  • [8] Variance function partially linear single-index models
    Lian, Heng
    Liang, Hua
    Carroll, Raymond J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 171 - 194
  • [9] Tests for nonparametric parts on partially linear single index models
    Zhang, Ri-quan
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (03): : 439 - 449
  • [10] A class of functional partially linear single-index models
    Ding, Hui
    Liu, Yanghui
    Xu, Wenchao
    Zhang, Riquan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 161 : 68 - 82