Separation of linear and index covariates in partially linear single-index models

被引:11
|
作者
Lian, Heng [1 ]
Liang, Hua [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
基金
中国国家自然科学基金;
关键词
Estimating equation; Identifiability constraint; Single-index model; Structure identification; VARIABLE SELECTION; LIKELIHOOD;
D O I
10.1016/j.jmva.2015.08.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated to automatically partition predictors into a linear part and a nonlinear part in partially linear single-index models (PLSIM), we consider the estimation of a partially linear single-index model where the linear part and the nonlinear part involves the same set of covariates. We use two penalties to identify the nonzero components of the linear and index vectors, which automatically separates covariates into the linear and nonlinear part, and thus solves the difficult problem of model structure identification in PLSIM. We propose an estimation procedure and establish its asymptotic properties, which takes into account constraints that guarantee identifiability of the model. Both simulated and real data are used to illustrate the estimation procedure. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 50 条
  • [1] Estimation in Partially Linear Single-Index Models with Missing Covariates
    Liu, X. H.
    Wang, Z. Z.
    Hu, X. M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (18) : 3428 - 3447
  • [2] ESTIMATION FOR SINGLE-INDEX AND PARTIALLY LINEAR SINGLE-INDEX INTEGRATED MODELS
    Dong, Chaohua
    Gao, Jiti
    Tjostheim, Dag
    [J]. ANNALS OF STATISTICS, 2016, 44 (01): : 425 - 453
  • [3] Empirical likelihood inference in partially linear single-index models with endogenous covariates
    Yang, Yiping
    Chen, Lifang
    Zhao, Peixin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) : 3297 - 3307
  • [4] Statistical inferences for partially linear single-index models with error-prone linear covariates
    Huang, Zhensheng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 899 - 909
  • [5] Statistical estimation in partially linear single-index models with error-prone linear covariates
    Huang, Zhensheng
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (02) : 339 - 350
  • [6] Generalized partially linear single-index models
    Carroll, RJ
    Fan, JQ
    Gijbels, I
    Wand, MP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 477 - 489
  • [7] On extended partially linear single-index models
    Xia, YC
    Tong, H
    Li, WK
    [J]. BIOMETRIKA, 1999, 86 (04) : 831 - 842
  • [8] Testing structural change in partially linear single-index models with error-prone linear covariates
    Huang, Zhensheng
    Pang, Zhen
    Hu, Tao
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 59 : 121 - 133
  • [9] ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS
    Liang, Hua
    Liu, Xiang
    Li, Runze
    Tsai, Chih-Ling
    [J]. ANNALS OF STATISTICS, 2010, 38 (06): : 3811 - 3836
  • [10] Variance function partially linear single-index models
    Lian, Heng
    Liang, Hua
    Carroll, Raymond J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 171 - 194