PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction

被引:341
|
作者
You, Zhu-Hong [1 ]
Huang, Zhi-An [2 ]
Zhu, Zexuan [2 ]
Yan, Gui-Ying [3 ]
Li, Zheng-Wei [4 ]
Wen, Zhenkun [2 ]
Chen, Xing [5 ]
机构
[1] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[4] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou, Peoples R China
[5] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
HUMAN MICRORNA; FUNCTIONAL SIMILARITY; EXPRESSION; DATABASE; GROWTH; CANCER; SUPPRESSOR; INFERENCE; TARGETS; STRESS;
D O I
10.1371/journal.pcbi.1005455
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] SRMDAP: SimRank and Density-Based Clustering Recommender Model for miRNA-Disease Association Prediction
    Li, Xiaoying
    Lin, Yaping
    Gu, Changlong
    Li, Zejun
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [32] HAMDA: Hybrid Approach for MiRNA-Disease Association prediction
    Chen, Xing
    Niu, Ya-Wei
    Wang, Guang-Hui
    Yan, Gui-Ying
    JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 76 : 50 - 58
  • [33] miRNA-Disease Association Prediction with Collaborative Matrix Factorization
    Shen, Zhen
    Zhang, You-Hua
    Han, Kyungsook
    Nandi, Asoke K.
    Honig, Barry
    Huang, De-Shuang
    COMPLEXITY, 2017,
  • [34] NMCMDA: neural multicategory MiRNA-disease association prediction
    Wang, Jingru
    Li, Jin
    Yue, Kun
    Wang, Li
    Ma, Yuyun
    Li, Qing
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [35] MCMDA: Matrix completion for MiRNA-disease association prediction
    Li, Jian-Qiang
    Rong, Zhi-Hao
    Chen, Xing
    Yan, Gui-Ying
    You, Zhu-Hong
    ONCOTARGET, 2017, 8 (13) : 21187 - 21199
  • [36] GRMDA: Graph Regression for MiRNA-Disease Association Prediction
    Chen, Xing
    Yang, Jing-Ru
    Guan, Na-Na
    Li, Jian-Qiang
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [37] Novel Human miRNA-Disease Association Inference Based on Random Forest
    Chen, Xing
    Wang, Chun-Chun
    Yin, Jun
    You, Zhu-Hong
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2018, 13 : 568 - 579
  • [38] A vector projection similarity-based method for miRNA-disease association prediction
    Xie, Guobo
    Xie, Weijie
    Gu, Guosheng
    Lin, Zhiyi
    Chen, Ruibin
    Liu, Shigang
    Yu, Junrui
    ANALYTICAL BIOCHEMISTRY, 2024, 687
  • [39] DEJKMDR: miRNA-disease association prediction method based on graph convolutional network
    Gao, Shiyuan
    Kuang, Zhufang
    Duan, Tao
    Deng, Lei
    FRONTIERS IN MEDICINE, 2023, 10
  • [40] MEAHNE: miRNA-Disease Association Prediction Based on Semantic Information in a Heterogeneous Network
    Huang, Chen
    Cen, Keliang
    Zhang, Yang
    Liu, Bo
    Wang, Yadong
    Li, Junyi
    LIFE-BASEL, 2022, 12 (10):