Generalised form factor dark matter in the Sun

被引:27
|
作者
Vincent, Aaron C. [1 ]
Serenelli, Aldo [2 ]
Scott, Pat [3 ]
机构
[1] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England
[2] Inst Ciencies Espai ICE CSIC IEEC, Cerdanyola Del Valles 08193, Spain
[3] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2015年 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
dark matter theory; solar physics; STELLAR EVOLUTION CODE; STANDARD SOLAR MODELS; DEGREE P-MODES; LOW-MASS STARS; LINE FORMATION; ELEMENTAL COMPOSITION; SEPARATION RATIOS; 1ST STARS; HELIOSEISMOLOGY; ABUNDANCE;
D O I
10.1088/1475-7516/2015/08/040
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the effects of energy transport in the Sun by asymmetric dark matter with momentum and velocity-dependent interactions, with an eye to solving the decade-old Solar Abundance Problem. We study effective theories where the dark matter-nucleon scattering cross-section goes as v(rel)(2n) and q(2n) with n = -1, 0, 1 or 2, where v(rel) is the dark matter-nucleon relative velocity and q is the momentum exchanged in the collision. Such cross-sections can arise generically as leading terms from the most basic nonstandard DM-quark operators. We employ a high-precision solar simulation code to study the impact on solar neutrino rates, the sound speed profile, convective zone depth, surface helium abundance and small frequency separations. We find that the majority of models that improve agreement with the observed sound speed pro file and depth of the convection zone also reduce neutrino fluxes beyond the level that can be reasonably accommodated by measurement and theory errors. However, a few specific points in parameter space yield a significant overall improvement. A 3-5 GeV DM particle with sigma(SI) proportional to q(2) is particularly appealing, yielding more than a 6 sigma improvement with respect to standard solar models, while being allowed by direct detection and collider limits. We provide full analytical capture expressions for q- and v(rel)-dependent scattering, as well as complete likelihood tables for all models.
引用
收藏
页数:44
相关论文
共 50 条
  • [11] Effects of nuclear deformation on the form factor for direct dark matter detection
    Chen Ya-Zheng
    Chen Jun-Mou
    Luo Yan-An
    Shen Hong
    Li Xue-Qian
    CHINESE PHYSICS C, 2012, 36 (06) : 505 - 512
  • [12] Electromagnetic properties of dark matter: Dipole moments and charge form factor
    Barger, Vernon
    Keung, Wai-Yee
    Marfatia, Danny
    PHYSICS LETTERS B, 2011, 696 (1-2) : 74 - 78
  • [13] Effects of nuclear deformation on the form factor for direct dark matter detection
    陈亚正
    谌俊谋
    罗延安
    申虹
    李学潜
    中国物理C, 2012, 36 (06) : 505 - 512
  • [14] Dark matter that can form dark stars
    Gondolo, Paolo
    Huh, Ji-Haeng
    Do Kim, Hyung
    Scopel, Stefano
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (07):
  • [15] Phenomenology of the generalised scotogenic model with fermionic dark matter
    Claudia Hagedorn
    Juan Herrero-García
    Emiliano Molinaro
    Michael A. Schmidt
    Journal of High Energy Physics, 2018
  • [16] Phenomenology of the generalised scotogenic model with fermionic dark matter
    Hagedorn, Claudia
    Herrero-Garcia, Juan
    Molinaro, Emiliano
    Schmidt, Michael A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [17] Erratum to: The distribution of inelastic dark matter in the Sun
    Mattias Blennow
    Stefan Clementz
    Juan Herrero-Garcia
    The European Physical Journal C, 2019, 79
  • [18] Bremsstrahlung signatures of dark matter annihilation in the Sun
    Fukushima, Keita
    Gao, Yu
    Kumar, Jason
    Marfatia, Danny
    PHYSICAL REVIEW D, 2012, 86 (07):
  • [19] The Sun and stars: Giving light to dark matter
    Casanellas, Jordi
    Lopes, Ilidio
    MODERN PHYSICS LETTERS A, 2014, 29 (37)
  • [20] The Sun: Light Dark Matter and Sterile Neutrinos
    Lopes, Ilidio
    ASTROPHYSICAL JOURNAL, 2020, 905 (01):