Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications

被引:101
|
作者
Li, Hui [1 ]
Shi, Hongbo [1 ]
He, Yunqing [1 ]
Fei, Xiang [1 ]
Peng, Lincai [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Agr & Food, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Chem Engn, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose nanocrystals; Carboxymethyl cellulose; Food packaging; NANOCOMPOSITE FILMS; BARRIER PROPERTIES; NANOCELLULOSE; ANTIOXIDANT; NANOFIBERS; RESIDUES; COATINGS; AGAR;
D O I
10.1016/j.ijbiomac.2020.09.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pea hull is a renewable, readily available and abundant agricultural waste whose high-value utilization deserves more attentions. This work aimed at the isolation of cellulose nanocrystals (CNC) from pea hull and evaluation its reinforcement capability for carboxymethyl cellulose (CMC) film. The obtained CNC displayed needle-like shapes with length of 81-286 nm, diameter of 8-21 nm, aspect ratio of 16 and crystallinity index of 0.77. The effects of CNC content on the morphologies, optical, mechanical, water vapor barrier and thermal properties of CMC/CNC films were investigated. SEM images showed that the CNC was evenly distributed in the CMC matrix to form homogenous films when the content of CNC was <= 5 wt%. The CMC/CNC composite films showed improved UV barrier, mechanical strength, water vapor barrier and thermal stability. Compared with pure CMC film, an increase of 50.8% in tensile strength and a decrease of 53.4% in water vapor permeability were observed for 5 wt% CNC-reinforced composite film. Furthermore, 5 wt% CNC-reinforced composite film was used for red chilies packaging, which is very effective at reducing weight loss and maintaining vitamin C compared with uncoated red chilies. These results indicated that the CMC/CNC composite film may have promising application potential as edible food packaging material. (C) 2020 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:4104 / 4112
页数:9
相关论文
共 50 条
  • [41] Preparation and characterization of dialdehyde cellulose nanocrystals from the waste nutshell
    Yu, Yonghong
    Guo, Wei
    Qu, Jiaji
    Wang, Sun
    Wang, Xiaogang
    He, Yong
    Yang, Yu
    He, Qiang
    Liu, Xiangdong
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023,
  • [42] Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste
    Chen, D.
    Lawton, D.
    Thompson, M. R.
    Liu, Q.
    CARBOHYDRATE POLYMERS, 2012, 90 (01) : 709 - 716
  • [43] High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system
    Zhao, Yali
    Zhou, Siying
    Xia, Xiaodong
    Tan, Mingqian
    Lv, Yanna
    Cheng, Yi
    Tao, Yehan
    Lu, Jie
    Du, Jian
    Wang, Haisong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 223 : 1126 - 1137
  • [44] Carboxymethyl cellulose-based functional film integrated with chitosan-based carbon quantum dots for active food packaging applications
    Riahi, Zohreh
    Rhim, Jong-Whan
    Bagheri, Reza
    Pircheraghi, Gholamreza
    Lotfali, Ensieh
    PROGRESS IN ORGANIC COATINGS, 2022, 166
  • [45] Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method
    Oun, Ahmed A.
    Rhim, Jong-Whan
    CARBOHYDRATE POLYMERS, 2017, 174 : 484 - 492
  • [46] Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications
    Yadav, Mithilesh
    Chiu, Fang-Chyou
    CARBOHYDRATE POLYMERS, 2019, 211 : 181 - 194
  • [47] Carboxymethyl cellulose-based functional film integrated with chitosan-based carbon quantum dots for active food packaging applications
    Riahi, Zohreh
    Rhim, Jong-Whan
    Bagheri, Reza
    Pircheraghi, Gholamreza
    Lotfali, Ensieh
    Progress in Organic Coatings, 2022, 166
  • [48] Preparation of xylan bio-composite films reinforced with oxidized carboxymethyl cellulose and nanocellulose
    Ali Abdulkhani
    Aysan Najd Mazhar
    Sahab Hedjazi
    Yahya Hamzeh
    Polymer Bulletin, 2020, 77 : 6227 - 6239
  • [49] Preparation of xylan bio-composite films reinforced with oxidized carboxymethyl cellulose and nanocellulose
    Abdulkhani, Ali
    Mazhar, Aysan Najd
    Hedjazi, Sahab
    Hamzeh, Yahya
    POLYMER BULLETIN, 2020, 77 (12) : 6227 - 6239
  • [50] From Structure to Properties of Composite Films Derived from Cellulose Nanocrystals
    Vollick, Brandon
    Kuo, Pei-Yu
    Alizadehgiashi, Moien
    Yan, Ning
    Kumacheva, Eugenia
    ACS OMEGA, 2017, 2 (09): : 5928 - 5934