The Mortar finite element method with Lagrange multipliers

被引:15
|
作者
Ben Belgacem, F [1 ]
机构
[1] Univ Toulouse 3, Lab Math Ind & Phys, Unite Mixte Rech CNRS UPS INSAT UT1 5640, F-31062 Toulouse 04, France
关键词
D O I
10.1007/s002110050468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper deals with a variant of a non conforming domain decomposition technique: the mortar finite element method. In the opposition to the original method this variant is never conforming because of the relaxation of the matching constraints at the vertices (and the edges in 3D) of subdomains. It is shown that, written under primal hybrid formulation, the approximation problem, issued from a discretization of a second order elliptic equation in 2D, is nonetheless well posed and provides a discrete solution that satisfies optimal error estimates with respect to natural norms. Finally the parallelization advantages consequence of this variant are also addressed.
引用
收藏
页码:173 / 197
页数:25
相关论文
共 50 条
  • [41] The mortar finite element method for Bingham fluids
    Hild, P
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01): : 153 - 164
  • [42] A multiscale mortar mixed finite element method
    Arbogast, Todd
    Pencheva, Gergina
    Wheeler, Mary F.
    Yotov, Ivan
    [J]. MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 319 - 346
  • [43] A multigrid algorithm for the mortar finite element method
    Braess, D
    Dahmen, W
    Wieners, C
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 48 - 69
  • [44] BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS
    BARBOSA, HJC
    HUGHES, TJR
    [J]. NUMERISCHE MATHEMATIK, 1992, 62 (01) : 1 - 15
  • [45] QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS
    Melenk, J. M.
    Wohlmuth, B.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (04) : 2064 - 2087
  • [46] A stable extended/generalized finite element method with Lagrange multipliers and explicit damage update for distributed cracking in cohesive materials
    Csati, Zoltan
    Moes, Nicolas
    Massart, Thierry J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369 (369)
  • [47] An optimization method of finite difference coefficient in spatial domain based on Lagrange multipliers
    Huang J.
    Lou L.
    Peng W.
    Li Q.
    [J]. Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2022, 46 (04): : 30 - 40
  • [48] The mortar element method for three dimensional finite elements
    Belgacem, B
    Maday, Y
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (02): : 289 - 302
  • [49] FINITE-ELEMENT MESH REFINEMENT BY THE MORTAR METHOD
    BERNARDI, C
    MADAY, Y
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (03): : 373 - 377
  • [50] Stability and Optimal Convergence of Unfitted Extended Finite Element Methods with Lagrange Multipliers for the Stokes Equations
    Fournie, Michel
    Lozinski, Alexei
    [J]. GEOMETRICALLY UNFITTED FINITE ELEMENT METHODS AND APPLICATIONS, 2017, 121 : 143 - 182