Source Apportionment of Airborne Particulate Matter for the Speciation Trends Network Site in Cleveland, OH

被引:26
|
作者
Zhou, Liming [2 ]
Hopke, Philip K. [1 ,2 ]
Zhao, Weixiang [2 ]
机构
[1] Clarkson Univ, Dept Chem & Biomol Engn, Ctr Air Resources Engn & Sci, Potsdam, NY 13699 USA
[2] Clarkson Univ, Dept Chem Engn, Potsdam, NY 13699 USA
关键词
ATMOSPHERIC AEROSOL; ORGANIC-CARBON; FINE PARTICLES; PM2.5; VARIABLES; US;
D O I
10.3155/1047-3289.S9.3.321
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerosol composition data from the Speciation Trends Network (STN) site (East 14th Street) in Cleveland, OH, were analyzed by advanced receptor model methods for source apportionment as well as by the standard positive matrix factorization (PMF) using PMF2. These different models are used in combination to test model limitations. These data were 24-hr average mass concentrations and compositions obtained for samples taken every third day from 2001 to 2003. The Multilinear Engine (ME) was used to solve an expanded model to estimate the source profiles and Source contributions and also to investigate the wind speed, wind direction, time-of-day, weekend/weekday, and seasonal effects. PMF2 was applied to the same data-set. Potential source contribution function (PSCF) and conditional probability function (CPF) analyses were used to locate the regional and local sources using the resolved source contributions and appropriate meteorological data. Very little difference was observed between the results of the expanded model and the PMF2 values for the profiles and source contribution time series. The identified sources were as ferrous smelter, secondary sulfate, secondary nitrate, soil/combustion mixture, steel mill, traffic, wood smoke, and coal burning. The CPF analysis was useful in helping to identify local sources, whereas the PSCF results were only useful for regional source areas. Both of these analyses were more useful than the wind directional factor derived from the expanded factor analysis. However, the expanded analysis provided direct information on seasonality and day-of-week behavior of the sources.
引用
收藏
页码:321 / 331
页数:11
相关论文
共 50 条
  • [21] Quantitative Source Apportionment of Size-segregated Particulate Matter at Urbanized Local Site in Korea
    Oh, Mi-Seok
    Lee, Tae-Jung
    Kim, Dong-Sool
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2011, 11 (03) : 247 - 264
  • [22] Source apportionment of airborne particulate matter in urban areas of Jiaozuo, China: Using a chemical mass balance model
    Chen, Xiaohua
    Xue, Yonghua
    Feng, Yinchang
    Zhu, Tan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [23] Source Apportionment of the Lung Dose of Ambient Submicrometre Particulate Matter
    Vu, Tuan V.
    Beddows, David C. S.
    Delgado-Saborit, Juana Maria
    Harrison, Roy M.
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2016, 16 (07) : 1548 - 1557
  • [24] Source apportionment research of fine particulate matter in the atmosphere by PAHs
    Ju Wang
    Le Yang
    Tianyi Ma
    Liyuan Sun
    Liangui Yu
    Chunsheng Fang
    [J]. Chemical Research in Chinese Universities, 2016, 32 : 746 - 753
  • [25] Monitoring and source apportionment of fine particulate matter at Lindon, Utah
    Grover, Brett D.
    Carter, Cory B.
    Kleinman, Michael A.
    Richards, Jeremy S.
    Eatough, Norman L.
    Eatough, Delbert J.
    Dasgupta, Purnendu K.
    Al-Horr, Rida
    Ullah, S. M. Rahmat
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (10) : 941 - 951
  • [26] Source apportionment of particulate matter in Europe: A review of methods and results
    Viana, M.
    Kuhlbusch, T. A. J.
    Querol, X.
    Alastuey, A.
    Harrison, R. M.
    Hopke, P. K.
    Winiwarter, W.
    Vallius, A.
    Szidat, S.
    Prevot, A. S. H.
    Hueglin, C.
    Bloemen, H.
    Wahlin, P.
    Vecchi, R.
    Miranda, A. I.
    Kasper-Giebl, A.
    Maenhaut, W.
    Hitzenberger, R.
    [J]. JOURNAL OF AEROSOL SCIENCE, 2008, 39 (10) : 827 - 849
  • [27] Source Apportionment Research of Fine Particulate Matter in the Atmosphere by PAHs
    Wang Ju
    Yang Le
    Ma Tianyi
    Sun Liyuan
    Yu Liangui
    Fang Chunsheng
    [J]. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2016, 32 (05) : 746 - 753
  • [28] Source apportionment of time and size resolved ambient particulate matter
    Li, Na
    Hopke, Philip K.
    Kumar, Pramod
    Cliff, Steven S.
    Zhao, Yongjing
    Navasca, Carmeliza
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 129 : 15 - 20
  • [29] Source apportionment of fine particulate matter in the southeastern united states
    Lee, Sangil
    Russell, Armistead G.
    Baumann, Karsten
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2007, 57 (09) : 1123 - 1135
  • [30] Source apportionment of atmospheric carbonaceous particulate matter based on the radiocarbon
    Guang-hua Wang
    You-shi Zeng
    Jian Yao
    Yuan Qian
    Yu Huang
    Ke Liu
    Wei Liu
    Yan Li
    [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295 : 1545 - 1552