Reaction rates for a generalized reaction-diffusion master equation

被引:8
|
作者
Hellander, Stefan [1 ]
Petzold, Linda [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
SIMULATING BIOCHEMICAL NETWORKS; FUNCTION REACTION DYNAMICS; RANDOM WALKS; LATTICES; SPACE; TIME;
D O I
10.1103/PhysRevE.93.013307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Convergence rates for a reaction-diffusion system
    Kirane, M
    Tatar, NE
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (02): : 347 - 357
  • [32] Pattern selection in a reaction-diffusion equation
    Wang Ping
    Hsieh Din-Yu
    Tang Shaoqiang
    Acta Mechanica Sinica, 2002, 18 (6) : 652 - 660
  • [33] REACTION-DIFFUSION EQUATION ON THIN DOMAINS
    HALE, JK
    RAUGEL, G
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1992, 71 (01): : 33 - 95
  • [34] Reaction-diffusion with stochastic decay rates
    John Lapeyre, G., Jr.
    Dentz, Marco
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (29) : 18863 - 18879
  • [35] Speed of fronts of the reaction-diffusion equation
    Benguria, RD
    Depassier, MC
    PHYSICAL REVIEW LETTERS, 1996, 77 (06) : 1171 - 1173
  • [36] PATTERN SELECTION IN A REACTION-DIFFUSION EQUATION
    王平
    谢定裕
    唐少强
    武际可
    Acta Mechanica Sinica, 2002, 18 (06) : 652 - 660
  • [37] ASYMMETRIC SOLUTIONS OF THE REACTION-DIFFUSION EQUATION
    NANDAKUMAR, K
    WEINITSCHKE, HJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 443 (1917): : 39 - 58
  • [38] PHASELOCKING IN A REACTION-DIFFUSION EQUATION WITH TWIST
    ERMENTROUT, GB
    TROY, C
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) : 1504 - 1520
  • [39] A REACTION-DIFFUSION EQUATION ON STRATIFIED GROUPS
    Jabbarkhanov K.
    Restrepo J.E.
    Suragan D.
    Journal of Mathematical Sciences, 2022, 266 (4) : 593 - 602
  • [40] Thermal runaway for a reaction-diffusion equation
    Okoya, SS
    Ajadi, SO
    Kolawole, AB
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2003, 30 (06) : 845 - 850