Wave function statistics at the symplectic two-dimensional Anderson transition: Bulk properties

被引:33
|
作者
Mildenberger, A.
Evers, F.
机构
[1] Univ Karlsruhe, Fak Phys, D-76128 Karlsruhe, Germany
[2] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
关键词
D O I
10.1103/PhysRevB.75.041303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The wave function statistics at the Anderson transition in a two-dimensional disordered electron gas with spin-orbit coupling is studied numerically. In addition to highly accurate exponents (alpha(0)=2.172 +/- 0.002,tau(2)=1.642 +/- 0.004), we report three qualitative results. (i) The anomalous dimensions are invariant under q ->(1-q) which is in agreement with a recent analytical prediction and supports the universality hypothesis. (ii) The multifractal spectrum is not parabolic and therefore differs from behavior suspected, e.g., for (integer) quantum Hall transitions in a fundamental way. (iii) The critical fixed point satisfies conformal invariance.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Wave-function extreme value statistics in Anderson localization
    Falcao, P. R. N.
    Lyra, M. L.
    PHYSICAL REVIEW B, 2022, 106 (18)
  • [42] Crystal statistics I A two-dimensional model with an order-disorder transition
    Onsager, L
    PHYSICAL REVIEW, 1944, 65 (3/4): : 117 - 149
  • [43] Low-energy transition in spectral statistics of two-dimensional interacting fermions
    Song, PH
    Shepelyansky, DL
    PHYSICAL REVIEW B, 2000, 61 (23): : 15546 - 15549
  • [44] STATISTICS OF TWO-DIMENSIONAL AMORPHOUS LATTICE
    KAWAMURA, H
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (02): : 352 - 365
  • [45] Two-dimensional discrete scan statistics
    Chen, J
    Glaz, J
    STATISTICS & PROBABILITY LETTERS, 1996, 31 (01) : 59 - 68
  • [46] On a generalized two-dimensional Gibbs Statistics
    Kar, Kulesh Ch.
    Mazumdar, R.
    ZEITSCHRIFT FUR PHYSIK, 1929, 55 (7-8): : 546 - 554
  • [47] Two-dimensional discrete scan statistics
    Stat Probab Lett, 1 (59):
  • [48] Two-dimensional Legendre polynomial modeling of composite bulk acoustic wave resonators
    Raherison, A.
    Lefebvre, J. E.
    Ratolojanahary, F. E.
    Elmaimouni, L.
    Gryba, T.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (10)
  • [49] Diffusion of electrons in two-dimensional disordered symplectic systems
    Kawarabayashi, T
    Ohtsuki, T
    PHYSICAL REVIEW B, 1996, 53 (11) : 6975 - 6978
  • [50] Closures of asymptotic curves in a two-dimensional symplectic map
    Treschev D.
    Journal of Dynamical and Control Systems, 1998, 4 (3) : 305 - 314