Bounding parameters in a linear regression model with a mismeasured regressor using additional information

被引:7
|
作者
Hu, Yingyao [1 ]
机构
[1] Univ Texas, Dept Econ, Austin, TX 78712 USA
关键词
nonclassical measurement error; dichotomous latent regressor;
D O I
10.1016/j.jeconom.2005.03.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper discusses a linear regression model with a mismeasured regressor in which the measurement error is correlated with both the latent variable and the regression error. We use a linear structure to capture the correlation between the measurement error and the latent variable. This paper shows that the variance of the latent variable is very useful for revealing information on the parameters which otherwise cannot be obtained with such a nonclassical measurement error. The main result is that the finite bounds on the parameters can be found using the variance of the latent variable, regardless of how severely the measurement error and the regression error are correlated, if the mismeasured regressor contains enough information on the latent one. This paper also discusses the special but interesting case of the latent variable being dichotomous. In this case, the mean of the latent variable may even reveal information on the correlation between the measurement error and the regression error. All the bounds developed in the paper are tight. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 50 条
  • [21] AN ALGORITHM FOR ESTIMATING THE PARAMETERS IN MULTIPLE LINEAR-REGRESSION MODEL WITH LINEAR CONSTRAINTS
    WANG, H
    RHEE, WT
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 1995, 28 (04) : 813 - 821
  • [22] SEQUENTIAL POINT ESTIMATION OF REGRESSION PARAMETERS IN A LINEAR-MODEL
    CHATURVEDI, A
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1987, 39 (01) : 55 - 67
  • [23] Performance of some new Liu parameters for the linear regression model
    Qasim, Muhammad
    Amin, Muhammad
    Omer, Talha
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (17) : 4178 - 4196
  • [24] GEOMETRICAL PROCEDURE TO CONTROL ESTIMATIBILITY OF PARAMETERS IN LINEAR REGRESSION MODEL
    JOZSA, S
    [J]. BIOMETRISCHE ZEITSCHRIFT, 1972, 14 (01): : 1 - &
  • [25] Optimal designs under a multivariate linear model with additional nuisance parameters
    Filipiak, Katarzyna
    Markiewicz, Augustyn
    Szczepanska, Anna
    [J]. STATISTICAL PAPERS, 2009, 50 (04) : 761 - 778
  • [26] Modified Multivariable Linear Regression Model for Prediction of System Parameters
    Shinde, Amol
    Angal, Yogesh S.
    Pal, Krishan
    [J]. PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, : 88 - 91
  • [27] Application of recursive approach in parameters identification of linear regression model
    School of Mechanical and Electronic Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
    不详
    [J]. J Vib Shock, 15 (19-25+46):
  • [28] Optimal designs under a multivariate linear model with additional nuisance parameters
    Katarzyna Filipiak
    Augustyn Markiewicz
    Anna Szczepańska
    [J]. Statistical Papers, 2009, 50 : 761 - 778
  • [29] The Influence of Using Plausible Values and Survey Weights on Multiple Regression and Hierarchical Linear Model Parameters
    Tat, Osman
    Koyuncu, Ilhan
    Gelbal, Selahattin
    [J]. JOURNAL OF MEASUREMENT AND EVALUATION IN EDUCATION AND PSYCHOLOGY-EPOD, 2019, 10 (03): : 235 - 248
  • [30] Parameters Estimation of Impulse Response in Compartment Model Using Cumulative Function and Linear Regression Analysis
    Tanaka T.
    Hattori T.
    Kawakami Y.
    Horikawa Y.
    Imai Y.
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2023, 143 (02) : 185 - 191