Bounding parameters in a linear regression model with a mismeasured regressor using additional information

被引:7
|
作者
Hu, Yingyao [1 ]
机构
[1] Univ Texas, Dept Econ, Austin, TX 78712 USA
关键词
nonclassical measurement error; dichotomous latent regressor;
D O I
10.1016/j.jeconom.2005.03.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper discusses a linear regression model with a mismeasured regressor in which the measurement error is correlated with both the latent variable and the regression error. We use a linear structure to capture the correlation between the measurement error and the latent variable. This paper shows that the variance of the latent variable is very useful for revealing information on the parameters which otherwise cannot be obtained with such a nonclassical measurement error. The main result is that the finite bounds on the parameters can be found using the variance of the latent variable, regardless of how severely the measurement error and the regression error are correlated, if the mismeasured regressor contains enough information on the latent one. This paper also discusses the special but interesting case of the latent variable being dichotomous. In this case, the mean of the latent variable may even reveal information on the correlation between the measurement error and the regression error. All the bounds developed in the paper are tight. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 50 条
  • [1] Closed-form estimation of a regression model with a mismeasured binary regressor and heteroskedasticity
    Liu, Yibin
    Wu, Wenbin
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 125 : 202 - 206
  • [2] PREDICTION WITH A LINEAR-REGRESSION MODEL AND ERRORS IN A REGRESSOR
    JONSSON, B
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1994, 10 (04) : 549 - 555
  • [3] SIMEX Estimation of Partially Linear Multiplicative Regression Model with Mismeasured Covariates
    Chen, Wei
    Wan, Mingzhen
    [J]. SYMMETRY-BASEL, 2023, 15 (10):
  • [4] On Information Criteria in Linear Regression Model
    Park, Man Sik
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (01) : 197 - 204
  • [5] Robust model selection in linear regression models using information complexity
    Guney, Yesim
    Bozdogan, Hamparsum
    Arslan, Olcay
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 398
  • [6] Smoothing parameters of penalized spline nonparametric regression model using linear mixed model
    Saputro, D. R. S.
    Lukmawati, H.
    Widyaningsih, P.
    [J]. FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [7] Estimating the parameters of a fuzzy linear regression model
    Arabpour, A. R.
    Tata, M.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2008, 5 (02): : 1 - 19
  • [8] A multiple linear regression model for imprecise information
    Maria Brigida Ferraro
    Paolo Giordani
    [J]. Metrika, 2012, 75 : 1049 - 1068
  • [9] ON ESTIMATION OF LINEAR FUNCTIONS OF PARAMETERS OF A LINEAR-REGRESSION MODEL
    ALI, MA
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 1991, 53 : 64 - 73
  • [10] A multiple linear regression model for imprecise information
    Ferraro, Maria Brigida
    Giordani, Paolo
    [J]. METRIKA, 2012, 75 (08) : 1049 - 1068