A Matching Pursuit Generalized Approximate Message Passing Algorithm

被引:5
|
作者
Luo, Yongjie [1 ]
Wan, Qun [1 ]
Gui, Guan [2 ]
Adachi, Fumiyuki [3 ]
机构
[1] Univ Elect & Sci Technol China, Chengdu 611731, Peoples R China
[2] Akita Prefectural Univ, Yurihonjo 0150055, Japan
[3] Tohoku Univ, Sendai, Miyagi 9808579, Japan
关键词
compressed sensing; generalized approximate message passing; matching pursuit; robust; SIGNAL RECOVERY;
D O I
10.1587/transfun.E98.A.2723
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel matching pursuit generalized approximate message passing (MPGAMP) algorithm which explores the support of sparse representation coefficients step by step, and estimates the mean and variance of non-zero elements at each step based on a generalized-approximate-message-passing-like scheme. In contrast to the classic message passing based algorithms and matching pursuit based algorithms, our proposed algorithm saves a lot of intermediate process memory, and does not calculate the inverse matrix. Numerical experiments show that MPGAMP algorithm can recover a sparse signal from compressed sensing measurements very well, and maintain good performance even for non-zero mean projection matrix and strong correlated projection matrix.
引用
收藏
页码:2723 / 2727
页数:5
相关论文
共 50 条
  • [31] Generalized Unitary Approximate Message Passing for Double Linear Transformation Model
    Mo, Linlin
    Lu, Xinhua
    Yuan, Jide
    Zhang, Chuanzong
    Wang, Zhongyong
    Popovski, Petar
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1524 - 1538
  • [32] Bilinear Generalized Approximate Message Passing-Part I: Derivation
    Parker, Jason T.
    Schniter, Philip
    Cevher, Volkan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (22) : 5839 - 5853
  • [33] Generalized Approximate Message Passing Detector for GSM-OTFS Systems
    Wang, Tiebin
    Fan, Shiwen
    Chen, Hao
    Xiao, Yue
    Guan, Xuemei
    Song, Wenlong
    [J]. IEEE ACCESS, 2022, 10 : 22997 - 23007
  • [34] Hyperspectral Image Unmixing via Bilinear Generalized Approximate Message Passing
    Vila, Jeremy
    Schniter, Philip
    Meola, Joseph
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [35] Group Testing With Side Information via Generalized Approximate Message Passing
    Cao, Shu-Jie
    Goenka, Ritesh
    Wong, Chau-Wai
    Rajwade, Ajit
    Baron, Dror
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2366 - 2375
  • [36] Bayesian Quantized Network Coding via Generalized Approximate Message Passing
    Nabaee, Mahdy
    Labeau, Fabrice
    [J]. 2014 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2014,
  • [37] Fast DOA estimation method using generalized approximate message passing
    Zhang, Jun
    Zhang, Xinyu
    Jiang, Weidong
    Liu, Yongxiang
    Li, Xiang
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (10): : 2995 - 3002
  • [38] Prediction errors for penalized regressions based on generalized approximate message passing
    Sakata, Ayaka
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (04)
  • [39] Concise Derivation for Generalized Approximate Message Passing Using Expectation Propagation
    Zou, Qiuyun
    Zhang, Haochuan
    Wen, Chao-Kai
    Jin, Shi
    Yu, Rong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (12) : 1835 - 1839
  • [40] Bilinear Generalized Approximate Message Passing-Part II: Applications
    Parker, Jason T.
    Schniter, Philip
    Cevher, Volkan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (22) : 5854 - 5867