Entropy production for open dynamical systems

被引:50
|
作者
Breymann, WG
Tel, T
Vollmer, J
机构
[1] EOTVOS LORAND UNIV, INST THEORET PHYS, H-1088 BUDAPEST, HUNGARY
[2] UNIV ESSEN GESAMTHSCH, FACHBEREICH PHYS, D-45117 ESSEN, GERMANY
关键词
D O I
10.1103/PhysRevLett.77.2945
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of the conditional probability density is used to define a specific entropy for open dynamical systems exhibiting transient chaos. The production of entropy turns out to be proportional to the difference of the escape rate and the sum of all averaged Lyapunov exponents on the saddle governing the dynamics. The single-particle transport proper-ties do not depend on the microscopic details provided the dynamical systems produce the same entropy. The dimension of the unstable foliation of the saddle is shown to be identical in all microscopic single-particle models of the same transport process.
引用
收藏
页码:2945 / 2948
页数:4
相关论文
共 50 条
  • [41] Entropy production in open quantum systems: exactly solvable qubit models
    Morozov, V. G.
    Roepke, G.
    CONDENSED MATTER PHYSICS, 2012, 15 (04)
  • [42] Topological entropy of nonautonomous dynamical systems
    Liu, Kairan
    Qiao, Yixiao
    Xu, Leiye
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5353 - 5365
  • [43] On entropy of dynamical systems with almost specification
    Dominik Kwietniak
    Piotr Oprocha
    Michał Rams
    Israel Journal of Mathematics, 2016, 213 : 475 - 503
  • [44] ENTROPY INCREASE IN DYNAMICAL-SYSTEMS
    GOLDSTEIN, S
    ISRAEL JOURNAL OF MATHEMATICS, 1981, 38 (03) : 241 - 256
  • [45] Logical entropy of quantum dynamical systems
    Ebrahimzadeh, Abolfazl
    OPEN PHYSICS, 2016, 14 (01): : 1 - 5
  • [46] On properties of the topological entropy of dynamical systems
    Vetokhin, A. N.
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 373 - 381
  • [47] Logical Entropy of Fuzzy Dynamical Systems
    Markechova, Dagmar
    Riecan, Beloslav
    ENTROPY, 2016, 18 (04)
  • [48] ENTROPY FORMULAS FOR DYNAMICAL SYSTEMS WITH MISTAKES
    Rousseau, Jerome
    Varandas, Paulo
    Zhao, Yun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (12) : 4391 - 4407
  • [49] Quantum dynamical entropy of spin systems
    Miyadera, T
    Ohya, M
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (01) : 1 - 10
  • [50] Dynamical entropy for systems with stochastic perturbation
    Ostruszka, A
    Pakonski, P
    Slomczynski, W
    Zyczkowski, K
    PHYSICAL REVIEW E, 2000, 62 (02): : 2018 - 2029