A FINITE ELEMENT LIKE SCHEME FOR INTEGRO-PARTIAL DIFFERENTIAL HAMILTON-JACOBI-BELLMAN EQUATIONS

被引:24
|
作者
Camilli, Fabio [1 ]
Jakobsen, Espen R. [2 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67040 Loc Monteluco Di Roio, AQ, Italy
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
integro-partial differential equation; viscosity solution; numerical scheme; Levy process; error estimate; JUMP-DIFFUSION; APPROXIMATION SCHEMES; VISCOSITY SOLUTIONS; NUMERICAL SCHEMES; AMERICAN OPTIONS; CONVERGENCE;
D O I
10.1137/080723144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a finite element like scheme for fully nonlinear integro-partial differential equations arising in optimal control of jump-processes. Special cases of these equations include optimal portfolio and option pricing equations in finance. The schemes are monotone and robust. We prove that they converge in very general situations, including degenerate equations, multiple dimensions, relatively low regularity of the data, and for most (if not all) types of jump-models used in finance. In all cases we provide (probably optimal) error bounds. These bounds apply when grids are unstructured and integral terms are very singular, two features that are new or highly unusual in this setting.
引用
收藏
页码:2407 / 2431
页数:25
相关论文
共 50 条
  • [31] NUMERICAL APPROXIMATION OF HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    MERCIER, B
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1980, 14 (04): : 369 - 393
  • [32] Stochastic homogenization of Hamilton-Jacobi-Bellman equations
    Kosygina, Elena
    Rezakhanlou, Fraydoun
    Varadhan, S. R. S.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (10) : 1489 - 1521
  • [33] Solving Hamilton-Jacobi-Bellman equations by an upwind finite difference method
    Wang, S
    Gao, F
    Teo, KL
    PROGRESS IN OPTIMIZATION: CONTRIBUTIONS FROM AUSTRALASIA, 2000, 39 : 255 - 268
  • [34] MIXED FINITE ELEMENT APPROXIMATION OF THE HAMILTON-JACOBI-BELLMAN EQUATION WITH CORDES COEFFICIENTS
    Gallistl, Dietmar
    Suli, Endre
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 592 - 614
  • [35] MULTIGRID METHODS FOR SECOND ORDER HAMILTON-JACOBI-BELLMAN AND HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Han, Dong
    Wan, Justin W. L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S323 - S344
  • [36] Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations
    Rao, Z.
    Siconolfi, A.
    Zidani, H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) : 3978 - 4014
  • [37] Numerical Solution of Hamilton-Jacobi-Bellman Equations by an Upwind Finite Volume Method
    S. Wang
    L.S. Jennings
    K.L. Teo
    Journal of Global Optimization, 2003, 27 : 177 - 192
  • [38] FINITE DIMENSIONAL APPROXIMATIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS IN SPACES OF PROBABILITY MEASURES
    Gangbo, Wilfrid
    Mayorga, Sergio
    Swiech, Andrzej
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) : 1320 - 1356
  • [39] Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations
    Bauer, Florian
    Gruene, Lars
    Semmler, Willi
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (09) : 1196 - 1210
  • [40] VISCOSITY SOLUTIONS OF STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS
    Qiu, Jinniao
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3708 - 3730