Sharp upper bounds on perfect retrieval in the Hopfield model

被引:15
|
作者
Bovier, A [1 ]
机构
[1] Weierstrass Inst Angew Anal & Stochast, D-10117 Berlin, Germany
关键词
Hopfield model; storage capacity; gradient dynamics; sequential dynamics;
D O I
10.1017/S0021900200017708
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a sharp upper bound on the number of patterns that can be stored in the Hopfield model if the stored patterns are required to be fixed points of the gradient dynamics. We also show corresponding bounds on the one-step convergence of the sequential gradient dynamics. The bounds coincide with the known lower bounds and confirm the heuristic expectations. The proof is based on a crucial idea of Loukianova (1997) using the negative association properties of some random variables arising in the analysis.
引用
收藏
页码:941 / 950
页数:10
相关论文
共 50 条
  • [21] Sharp upper and lower bounds for the moments of Bernstein polynomials
    Adell, Jose A.
    Bustamante, Jorge
    Quesada, Jose M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 723 - 732
  • [22] Sharp Upper Bounds for the Laplacian Spectral Radius of Graphs
    Zhou, Houqing
    Xu, Youzhuan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [23] Some sharp upper bounds on the spectral radius of graphs
    Feng, Lihua
    Li, Qiao
    Zhang, Xiao-Dong
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 989 - 997
  • [24] Sharp upper bounds for the density of some invariant measures
    Fornaro, Simona
    Fusco, Nicola
    Metafune, Giorgio
    Pallara, Diego
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 1145 - 1161
  • [25] Sharp Upper Bounds for the Balaban Index of Bicyclic Graphs
    Chen, Zengqiang
    Dehmer, Matthias
    Shi, Yongtang
    Yang, Hua
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (01) : 105 - 128
  • [26] Sharp upper bounds for a variational problem with singular perturbation
    Conti, Sergio
    De Lellis, Camillo
    MATHEMATISCHE ANNALEN, 2007, 338 (01) : 119 - 146
  • [28] SHARP UPPER BOUNDS FOR THE NUMBER OF SPANNING TREES OF A GRAPH
    Feng, Lihua
    Yu, Guihai
    Jiang, Zhengtao
    Ren, Lingzhi
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 255 - 259
  • [29] Sharp lower and upper bounds for the Gaussian rank of a graph
    Ben-David, Emanuel
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 207 - 218
  • [30] Sharp upper bounds for a variational problem with singular perturbation
    Sergio Conti
    Camillo De Lellis
    Mathematische Annalen, 2007, 338 : 119 - 146