Model Recognition by Using Principal Component Analysis (PCA) Approach

被引:0
|
作者
Siraj-Ud-Doulah, Md. [3 ]
Rana, Sohel [1 ,2 ]
Midi, Habshah [1 ,2 ]
机构
[1] Univ Putra Malaysia, Fac Sci, Dept Math, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Inst Math Res, Lab Computat Stat & Operat Res, Upm Serdang 43400, Selangor, Malaysia
[3] Begum Rokeya Univ, Dept Stat, Rangpur, Bangladesh
来源
CHIANG MAI JOURNAL OF SCIENCE | 2014年 / 41卷 / 01期
关键词
model recognition; fitting; rank; principal component;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, an alternative model recognition method is proposed by using Principal Component Analysis (PCA). This alternative approach is used to choose the optimum model for fitting the index of real compensation per hour (Y) and labor productivity per hour (X) in the business sector of the U. S. economy for the period 1960-1991. Comparison is then made with the existing methods such as ranks of the R-2, Adjusted R-2(R-2), Akaike Information Criterion (AIC) and Schwarz's Information Criterion (SIC) values. The empirical evidence shows that the proposed method has the same ability to choose the best fitted models. The main attraction of this method is that it can be applied to all types of data scale; however, the existing methods not work for all types of data scale. Additionally, the proposed method has a clear edge over its rival because the PCA uses actual observations. Hence, we suggest to use the proposed method instead of the existing methods in determining the best fitted model.
引用
收藏
页码:224 / 230
页数:7
相关论文
共 50 条
  • [21] Gait Recognition using Fuzzy Principal Component Analysis
    Xu, Su-li
    Zhang, Qian-jin
    [J]. 2010 2ND INTERNATIONAL CONFERENCE ON E-BUSINESS AND INFORMATION SYSTEM SECURITY (EBISS 2010), 2010, : 10 - 13
  • [22] Face Recognition using Euler Principal Component Analysis
    Boon, Yinn Xi
    Ch'ng, Sue Inn
    [J]. 2015 4TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION ICIEV 15, 2015,
  • [23] Face recognition using kernel principal component analysis
    Kim, KI
    Jung, K
    Kim, HJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (02) : 40 - 42
  • [24] Sign Language Recognition Using Principal Component Analysis
    Saxena, Ankita
    Jain, Deepak Kumar
    Singhal, Ananya
    [J]. 2014 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT), 2014, : 810 - 813
  • [25] Face recognition using improved principal component analysis
    Nara, Y
    Yang, JM
    Suematsu, Y
    [J]. MHS2003: PROCEEDINGS OF 2003 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 2003, : 77 - 82
  • [26] Analysis of EEG using principal component approach
    Padmasai, Y.
    SubbaRao, K.
    Rao, C. Raghavendra
    Jayalakshmi, S. Sita
    [J]. 2007 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-4, 2007, : 134 - +
  • [27] Pattern Recognition of Decorative Papers with Different Visual Characteristics Using Visible Spectroscopy Coupled with Principal Component Analysis (PCA)
    Zhang Mao-mao
    Yang Zhong
    Lu Bin
    Liu Ya-na
    Sun Xue-dong
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (02) : 443 - 446
  • [28] The use of principal component analysis (PCA) for pattern recognition in Eucalyptus grandis wood biodegradation experiments
    A. Ferraz
    E. Esposito
    R.E. Bruns
    N. Durán
    [J]. World Journal of Microbiology and Biotechnology, 1998, 14 : 487 - 490
  • [29] Pattern characteristics of Indian monsoon rainfall using principal component analysis (PCA)
    Singh, CV
    [J]. ATMOSPHERIC RESEARCH, 2006, 79 (3-4) : 317 - 326
  • [30] The use of principal component analysis (PCA) for pattern recognition in Eucalyptus grandis wood biodegradation experiments
    Ferraz, A
    Esposito, E
    Bruns, RE
    Duran, N
    [J]. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1998, 14 (04): : 487 - 490