Self-affine tiling via substitution dynamical systems and Rauzy fractals

被引:49
|
作者
Sirvent, VF [1 ]
Wang, Y
机构
[1] Univ Simon Bolivar, Dept Matemat, Caracas 1086A, Venezuela
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.2140/pjm.2002.206.465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that a class of sets known as the Rauzy fractals, which are constructed via substitution dynamical systems, give rise to self-affine multi-tiles and self-affine tilings. This provides an efficient and unconventional way for constructing aperiodic self-affine tilings. Our result also leads to a proof that a Rauzy fractal R associated with a primitive and unimodular Pisot substitution has nonempty interior.
引用
收藏
页码:465 / 485
页数:21
相关论文
共 50 条
  • [31] Hausdorff dimension of generalized statistically self-affine fractals
    Yu, JG
    Ding, LX
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (03) : 421 - 433
  • [32] Self-affine fractals embedded in spectra of complex networks
    Yang, Huijie
    Yin, Chuanyang
    Zhu, Guimei
    Li, Baowen
    PHYSICAL REVIEW E, 2008, 77 (04)
  • [33] RECURRENCE TO SHRINKING TARGETS ON TYPICAL SELF-AFFINE FRACTALS
    Koivusalo, Henna
    Ramirez, Felipe A.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (02) : 387 - 400
  • [34] Radix expansions and connectedness of planar self-affine fractals
    Lian Wang
    King-Shun Leung
    Monatshefte für Mathematik, 2020, 193 : 705 - 724
  • [35] Spectral and tiling properties for a class of planar self-affine sets
    Liu, Jing-Cheng
    Liu, Qiao-Qin
    Tang, Min-Wei
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [36] Lattice-tiling properties of integral self-affine functions
    Kolountzakis, MN
    APPLIED MATHEMATICS LETTERS, 1997, 10 (05) : 1 - 4
  • [37] Surfaces generated by abrasive finishing processes as self-affine fractals
    Thomas, T. R.
    Rosen, B-G.
    INTERNATIONAL JOURNAL OF SURFACE SCIENCE AND ENGINEERING, 2009, 3 (04) : 275 - 285
  • [38] Lattice-tiling properties of integral self-affine functions
    Department of Mathematics, Univ. Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, United States
    不详
    Appl Math Lett, 5 (1-4):
  • [39] Fluid flow across mass fractals and self-affine surfaces
    Zhang, Xiaodong
    Knackstedt, Mark A.
    Sahimi, Muhammad
    Physica A: Statistical Mechanics and its Applications, 1996, 233 (3-4): : 835 - 847
  • [40] Diffusion-limited reaction rates on self-affine fractals
    Rant, R
    JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19): : 3781 - 3787