Self-affine tiling via substitution dynamical systems and Rauzy fractals

被引:49
|
作者
Sirvent, VF [1 ]
Wang, Y
机构
[1] Univ Simon Bolivar, Dept Matemat, Caracas 1086A, Venezuela
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.2140/pjm.2002.206.465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that a class of sets known as the Rauzy fractals, which are constructed via substitution dynamical systems, give rise to self-affine multi-tiles and self-affine tilings. This provides an efficient and unconventional way for constructing aperiodic self-affine tilings. Our result also leads to a proof that a Rauzy fractal R associated with a primitive and unimodular Pisot substitution has nonempty interior.
引用
收藏
页码:465 / 485
页数:21
相关论文
共 50 条
  • [1] SELF-AFFINE FRACTALS
    BENNASR, F
    BULLETIN DES SCIENCES MATHEMATIQUES, 1992, 116 (01): : 111 - 119
  • [2] Self-affine Fractals Generated by Nonlinear Systems
    Kocic, Ljubisa
    Gegovska-Zajkova, Sonja
    Babace, Elena
    NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 353 - +
  • [3] Self-Affine Tiling of Polyhedra
    Protasov, V. Yu
    Zaitseva, T., I
    DOKLADY MATHEMATICS, 2021, 104 (02) : 267 - 272
  • [4] Self-Affine Tiling of Polyhedra
    V. Yu. Protasov
    T. I. Zaitseva
    Doklady Mathematics, 2021, 104 : 267 - 272
  • [5] MULTIFRACTALITY OF SELF-AFFINE FRACTALS
    BARABASI, AL
    VICSEK, T
    PHYSICAL REVIEW A, 1991, 44 (04): : 2730 - 2733
  • [6] On the Dimension of Self-Affine Fractals
    Kirat, Ibrahim
    Kocyigit, Ilker
    CHAOS AND COMPLEX SYSTEMS, 2013, : 151 - 156
  • [7] On a generalized dimension of self-affine fractals
    He, Xing-Gang
    Lau, Ka-Sing
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1142 - 1158
  • [8] Exceptional sets for self-affine fractals
    Falconer, Kenneth
    Miao, Jun
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 669 - 684
  • [9] SELF-AFFINE FRACTALS AND FRACTAL DIMENSION
    MANDELBROT, BB
    PHYSICA SCRIPTA, 1985, 32 (04) : 257 - 260
  • [10] RANDOM SUBSETS OF SELF-AFFINE FRACTALS
    Falconer, Kenneth
    Miao, Jun
    MATHEMATIKA, 2010, 56 (01) : 61 - 76