Fabrication and characterization of porous alumina with denser surface layer by direct foaming

被引:8
|
作者
Shimamura, Akihiro [1 ]
Fukushima, Manabu [1 ]
Hotta, Mikinori [1 ]
Ohji, Tatsuki [1 ]
Kondo, Naoki [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Moriyama Ku, 2266-98 Anagahora, Nagoya, Aichi 4638560, Japan
关键词
Porous alumina; Surface structure; Direct-foaming; Novolac resin; SILICON-CARBIDE; PHENOLIC RESIN; THERMAL-CONDUCTIVITY; MACROPOROUS CERAMICS; CELLULAR CERAMICS; HEXAMETHYLENETETRAMINE; NOVOLAC; MIXTURES; BEHAVIOR; POWDERS;
D O I
10.2109/jcersj2.16171
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Porous alumina with a denser surface layer is fabricated from an alumina/novolac composite body containing hexamethylenetetramine (HMT) that is used as a blowing agent and a curing agent for the novolac resin. A gas blown from HMT leads to the formation of pores up to submillimeter inside the alumina/novolac composite body. On the other hand, the denser surface layer without large pores is formed by the gas released from the surface during blowing. The blowing condition for the alumina/novolac composite body is examined as a function of heat-treatment temperature in order to investigate the formation of the pore and the surface layer. Porous alumina with the denser surface layer is obtained through de-binding and sintering of the body. This paper also describes the microstructure and mechanical strength of the sintered porous alumina, and advantages of the denser surface layer. (C) 2017 The Ceramic Society of Japan. All rights reserved.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 50 条
  • [21] Effect of heating rate on the porous structure of an alumina/resin foamed body obtained via direct foaming
    Shimamura, Akihiro
    Fukushima, Manabu
    Kondo, Naoki
    Hotta, Mikinori
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2020, 128 (09) : 577 - 581
  • [22] Direct foaming of macroporous ceramics containing colloidal alumina
    Finhana, I. C.
    Machado, V. V. S.
    Santos Jr, T.
    Borges, O. H.
    Salvini, V. R.
    Pandolfelli, V. C.
    CERAMICS INTERNATIONAL, 2021, 47 (11) : 15237 - 15244
  • [23] Processing of Porous Ceramics by Direct Foaming: A Review
    Pokhrel, Ashish
    Seo, Dong Nam
    Lee, Seung Taek
    Kim, Ik Jin
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2013, 50 (02) : 93 - 102
  • [24] Preparation of reaction-bonded porous silicon carbide with denser surface layer in one-pot process
    Shimamura, Akihiro
    Fukushima, Manabu
    Hotta, Mikinori
    Ohji, Tatsuki
    Kondo, Naoki
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2015, 123 (1444) : 1106 - 1108
  • [25] Fabrication of bimodal porous alumina ceramics
    Han, YS
    Li, JB
    Chen, YJ
    MATERIALS RESEARCH BULLETIN, 2003, 38 (02) : 373 - 379
  • [26] Fabrication and characterization of porous anodic alumina films from impure aluminum foils
    Lo, Daniel
    Budiman, R. Arief
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (01) : C60 - C66
  • [27] Fabrication and characterization of micro-porous ceramic membrane based on kaolin and alumina
    Prabhu, Vandana
    Patwardhan, Anand V.
    Patwardhan, Ashwin W.
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2017, 24 (04) : 367 - 373
  • [28] Processing of porous alumina by foaming method-effect of foaming agent, solid loading and binder
    Devavarapu, Soumya
    Chaudhuri, Paritosh
    Shrivastava, Aroh
    Bhattacharyyaa, Santanu
    CERAMICS INTERNATIONAL, 2019, 45 (09) : 12264 - 12273
  • [29] Direct femtosecond laser fabrication of antireflective layer on GaAs surface
    A. A. Ionin
    Y. M. Klimachev
    A. Y. Kozlov
    S. I. Kudryashov
    A. E. Ligachev
    S. V. Makarov
    L. V. Seleznev
    D. V. Sinitsyn
    A. A. Rudenko
    R. A. Khmelnitsky
    Applied Physics B, 2013, 111 : 419 - 423
  • [30] Direct femtosecond laser fabrication of antireflective layer on GaAs surface
    Ionin, A. A.
    Klimachev, Y. M.
    Kozlov, A. Y.
    Kudryashov, S. I.
    Ligachev, A. E.
    Makarov, S. V.
    Seleznev, L. V.
    Sinitsyn, D. V.
    Rudenko, A. A.
    Khmelnitsky, R. A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 111 (03): : 419 - 423