Mathematical modelling to control a pest population by infected pests

被引:23
|
作者
Sun, Shulin [1 ,2 ]
Chen, Lansun [2 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
[2] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated Pest Management; Globally asymptotic stability; Permanence; STABILITY; MANAGEMENT; BEHAVIOR; DISEASES; SYSTEMS;
D O I
10.1016/j.apm.2008.08.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper. we formulate and investigate the pest control models in accordance with the mathematical theory of epidemiology. We assume that the release of infected pests is continuous and impulsive, respectively. Therefore, our models are the ordinary differential equations and the impulsive differential equations. We study the global stability of the equilibria of the ordinary differential equations. The permanence of the impulsive differential equations is proved. By means of numerical simulation, we obtain the critical values of the control variable under different methods of release of infected pests. Thus, we provide a mathematical evidence in the management of an epidemic controlling a pest. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2864 / 2873
页数:10
相关论文
共 50 条
  • [21] Pest control may make the pest population explode
    Ninomiya, H
    Weinberger, HF
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (05): : 869 - 873
  • [22] Mathematical Modelling on Alcohol Consumption Control and its Effect on Poor Population
    Chinnadurai, K.
    Athithan, S.
    Kareem, M.G. Fajlul
    IAENG International Journal of Applied Mathematics, 2024, 54 (01) : 1 - 9
  • [23] Pest control may make the pest population explode
    H. Ninomiya
    H. F. Weinberger
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 869 - 873
  • [24] Pest-predator Model with Impulsively Releasing Infective Pests and Natural Enemies for Pest Control
    Xu, Weijian
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 368 - 372
  • [25] MATHEMATICAL-MODEL FOR PEST-CONTROL
    CHATTERJEE, S
    BIOMETRICS, 1973, 29 (04) : 727 - 734
  • [26] Potential hazards caused by pests und pest control in farm animals
    Voigt, Thomas F.
    TIERAERZTLICHE UMSCHAU, 2011, 66 (09) : 355 - 363
  • [27] Pest control using virus as control agent: A mathematical model
    Pathak, Sweta
    Maiti, Alakes
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (01): : 67 - 90
  • [28] Survey of Sugarcane Pests in Xianggui Sugarcane Area and Countermeasures of Pest Control
    Xie Jiangjiang
    Yang Junxian
    Luo Qingwen
    Yang Chunqiang
    Pan Qiaofei
    Plant Diseases and Pests, 2020, (01) : 13 - 16
  • [29] SPECIAL FEATURE - WEED AND PEST-CONTROL - BIOLOGICAL AND INTEGRATED CONTROL OF AGRICULTURAL PESTS
    不详
    NEW ZEALAND JOURNAL OF AGRICULTURE, 1979, 139 (04): : 21 - 24
  • [30] Problems of mathematical modelling of population dynamics
    Abakumov, AI
    ZHURNAL OBSHCHEI BIOLOGII, 2000, 61 (02): : 145 - 156