First-principles quantum Monte Carlo studies for prediction of double minima for positronic hydrogen molecular dianion

被引:11
|
作者
Ito, Shumpei [1 ]
Yoshida, Daisuke [1 ]
Kita, Yukiumi [1 ]
Tachikawa, Masanori [1 ]
机构
[1] Yokohama City Univ, Quantum Chem Div, Kanazawa Ku, Seto 22-2, Yokohama, Kanagawa 2360027, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 22期
关键词
CONFIGURATION-INTERACTION; BINDING-ENERGIES; BOUND-STATES; COMPLEXES; ELECTRON;
D O I
10.1063/5.0022673
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We studied the positron (e(+)) interaction with the hydrogen molecular dianion H-2(2-) to form the positronic bound state of [H-; e(+); H-] using the first-principles quantum Monte Carlo method combined with the multi-component molecular orbital one. H-2(2-) itself is unstable, but it was shown that such an unbound H-2(2-) may become stable by intermediating a positron and forming the positronic covalent bond of the [H-; e(+); H-] system [J. Charry et al., Angew. Chem., Int. Ed. 57, 8859-8864 (2018)]. We newly found that [H-; e(+); H-] has double minima containing another positronic bound state of [H-2; Ps(-)]-like configuration with the positronium negative ion Ps(-) at the bond distance approximately equal to the equilibrium H-2 molecule. Our multi-component variational Monte Carlo calculation and the multi-component configuration interaction one resulted in the positronic covalent bonded structure being the global minimum, whereas a more sophisticated multi-component diffusion Monte Carlo calculation clearly showed that the [H-2; Ps(-)]-like structure at the short bond distance is energetically more stable than the positronic covalent bonded one. The relaxation due to interparticle correlation effects pertinent to Ps(-) (or Ps) formation is crucial for the formation of the Ps(-)A(2)-like structure for binding a positron to the non-polar negatively charged dihydrogen.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Adaptive kinetic Monte Carlo for first-principles accelerated dynamics
    Xu, Lijun
    Henkelman, Graeme
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (11):
  • [12] Competing collinear magnetic structures in superconducting FeSe by first-principles quantum Monte Carlo calculations
    Busemeyer, Brian
    Dagrada, Mario
    Sorella, Sandro
    Casula, Michele
    Wagner, Lucas K.
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [13] First Principles Methods: A Perspective from Quantum Monte Carlo
    Morales, Miguel A.
    Clay, Raymond
    Pierleoni, Carlo
    Ceperley, David M.
    ENTROPY, 2014, 16 (01) : 287 - 321
  • [14] A first-principles Quantum Monte Carlo study of two-dimensional (2D) GaSe
    Wines, Daniel
    Saritas, Kayahan
    Ataca, Can
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (15):
  • [15] First-Principles Monte Carlo Simulations of Reaction Equilibria in Compressed Vapors
    Fetisov, Evgenii O.
    Kuo, I-Feng William
    Knight, Chris
    VandeVondele, Joost
    Van Voorhis, Troy
    Siepmann, J. Ilja
    ACS CENTRAL SCIENCE, 2016, 2 (06) : 409 - 415
  • [16] First-principles and Monte Carlo simulations of high-entropy MXenes
    Oyeniran, Noah
    Chowdhury, Oyshee
    Hu, Chongze
    APPLIED PHYSICS LETTERS, 2025, 126 (12)
  • [17] Ferroelectric mechanism of croconic acid: A first-principles and Monte Carlo study
    Cai, Yaxuan
    Luo, Shijun
    Zhu, Zhanwu
    Gu, Haoshuang
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (04):
  • [18] First-principles kinetic Monte Carlo approach for simulating electrochemical processes
    Honkala, Karoliina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [19] Self-learning hybrid Monte Carlo: A first-principles approach
    Nagai, Yuki
    Okumura, Masahiro
    Kobayashi, Keita
    Shiga, Motoyuki
    PHYSICAL REVIEW B, 2020, 102 (04)
  • [20] Mechanism of Trichloroethene Hydrodehalogenation: A First-Principles Kinetic Monte Carlo Study
    Kausamo, A.
    Andersin, J.
    Honkala, K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (34): : 19759 - 19767