Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review

被引:785
|
作者
Yang, Zhenguo [1 ]
Choi, Daiwon [1 ]
Kerisit, Sebastien [1 ]
Rosso, Kevin M. [1 ]
Wang, Donghai [1 ]
Zhang, Jason [1 ]
Graff, Gordon [1 ]
Liu, Jun [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
Li-ion batteries; Anode; Nanostructured materials; Titanium oxides; Titanite; ANATASE TIO2 NANOTUBES; HIGH-PRESSURE PHASE; ENERGY-CONVERSION; ANODE MATERIAL; ION INSERTION; RUTILE; LI; INTERCALATION; DIFFUSION; STORAGE;
D O I
10.1016/j.jpowsour.2009.02.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Being inherently safe and chemically compatible with the electrolyte, titanium oxide-based materials, including both Li-titanites and various TiO2 Polymorphs, are considered alternatives to carbonaceous anodes in Li-ion batteries. Given the commercial success of the spinel lithium titanites, TiO2 Polymorphs, in particular in nanostructured forms, have been fabricated and investigated for the applications. Nanostructuring leads to increased reaction areas, shortened Li+ diffusion and potentially enhanced solubility/capacity. Integration with an electron-conductive second phase into the TiO2-based nanostructures eases the electron transport, resulting in further improved lithium electrochemical activity and the overall electrochemical performance. This paper reviews structural characteristics and Li-electrochemical reactivity, along with synthetic approaches, of nanostructures and nano-composites based on lithium titanites and TiO2 polymorphs that include rutile, anatase, bronze and brookite. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:588 / 598
页数:11
相关论文
共 50 条
  • [21] Electrochemical reactivity of Cu3P with lithium
    Bichat, MP
    Politova, T
    Pascal, JL
    Favier, F
    Monconduit, L
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (12) : A2074 - A2081
  • [22] RELATIONS BETWEEN STRUCTURE AND LITHIUM ELECTROCHEMICAL REACTIVITY IN VANADATES
    Denis, S.
    Baudrin, E.
    Laruelle, S.
    Touboul, M.
    Tarascon, J-M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 11 - 11
  • [23] Reactivity, stability and electrochemical behavior of lithium iron phosphates
    Yang, SF
    Song, YN
    Zavalij, PY
    Whittingham, MS
    ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (03) : 239 - 244
  • [24] Electrochemical characteristics of silicon and titanium oxides and titanium-oxygen nanostructures on silica supports
    Ermakova, LE
    Sidorova, MP
    Bogdanova, NF
    Borisova, MN
    COLLOID JOURNAL, 1999, 61 (06) : 714 - 718
  • [25] Electrochemical characteristics of silicon and titanium oxides and titanium-oxygen nanostructures on silica supports
    Ermakova, L.E.
    Sidorova, M.P.
    Bogdanova, N.F.
    Borisova, M.N.
    Colloid Journal of the Russian Academy of Sciences: Kolloidnyi Zhurnal, 1999, 61 (06): : 714 - 718
  • [26] TITANIUM STABILITY IN LITHIUM HYDROXIDE ELECTROCHEMICAL PRODUCTION MEDIA
    BALITSKY, VN
    ILLARIONOVA, IS
    KHIMICHESKAYA PROMYSHLENNOST, 1989, (04): : 283 - 284
  • [27] Titanium pyrophosphate hexagonal nanoplates for electrochemical lithium storage
    Lai, Chao
    Wang, Wenge
    Gao, JinJin
    Wang, Yonglong
    Ye, Shihai
    Li, Liang
    Wang, Chao
    RSC ADVANCES, 2013, 3 (32): : 13137 - 13139
  • [28] Titanium-containing complex oxides as anode materials for lithium-ion batteries: a review
    Lin, Chunfu
    Yang, Chao
    Lin, Shiwei
    Li, Jianbao
    MATERIALS TECHNOLOGY, 2015, 30 (A4) : 192 - 202
  • [29] ELECTROCHEMICAL STUDIES OF LITHIUM INTERCALATION IN TITANIUM AND TANTALUM DICHALCOGENIDES
    THOMPSON, AH
    PHYSICA B & C, 1980, 99 (1-4): : 100 - 106
  • [30] Lithium intercalation into nanostructured films based on oxides of tin and titanium
    Kulova, TL
    Skundin, AM
    Roginskaya, YE
    Chibirova, FK
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2004, 40 (04) : 432 - 439