On centralisers in q-deformed Heisenberg algebras

被引:1
|
作者
Hellstrom, L [1 ]
Silvestrov, SD [1 ]
机构
[1] ROYAL INST TECHNOL,DEPT MATH,S-10044 STOCKHOLM,SWEDEN
关键词
D O I
10.1023/A:1021666318885
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Algebraic structure of q-deformed Heisenberg algebras is investigated with emphasis on the properties of centralisers of elements of the algebra.
引用
收藏
页码:1163 / 1169
页数:7
相关论文
共 50 条
  • [1] q-deformed Heisenberg algebras
    Wess, J
    [J]. GEOMETRY AND QUANTUM PHYSICS, 2000, 543 : 311 - 382
  • [2] Braided chains of q-deformed Heisenberg algebras
    Fiore, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5289 - 5298
  • [3] Lie polynomials in q-deformed Heisenberg algebras
    Cantuba, Rafael Reno S.
    [J]. JOURNAL OF ALGEBRA, 2019, 522 : 101 - 123
  • [4] Embedding q-deformed Heisenberg algebras into undeformed ones
    Fiore, G
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 1999, 43 (1-2) : 101 - 108
  • [5] Two-sided ideals in q-deformed Heisenberg algebras
    Hellström, L
    Silvestrov, S
    [J]. EXPOSITIONES MATHEMATICAE, 2005, 23 (02) : 99 - +
  • [6] REPRESENTATIONS OF A Q-DEFORMED HEISENBERG ALGEBRA
    HEBECKER, A
    SCHRECKENBERG, S
    SCHWENK, J
    WEICH, W
    WESS, J
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 64 (02): : 355 - 359
  • [7] Some comments on q-deformed oscillators and q-deformed su(2) algebras
    Kwek, LC
    Oh, CH
    [J]. EUROPEAN PHYSICAL JOURNAL C, 1998, 5 (01): : 189 - 193
  • [8] Some comments on q-deformed oscillators and q-deformed su(2) algebras
    Kwek L.C.
    Oh C.H.
    [J]. The European Physical Journal C - Particles and Fields, 1998, 5 (1): : 189 - 193
  • [9] Burchnall-Chaundy theory for q-difference operators and q-deformed Heisenberg algebras
    Larsson, D
    Silvestrov, SD
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 : 95 - 106
  • [10] Burchnall-Chaundy Theory for q-Difference Operators and q-Deformed Heisenberg Algebras
    Daniel Larsson
    Sergei D Silvestrov
    [J]. Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 95 - 106