Lie polynomials in q-deformed Heisenberg algebras

被引:5
|
作者
Cantuba, Rafael Reno S. [1 ]
机构
[1] De La Salle Univ, Math & Stat Dept, Manila, Philippines
关键词
q-Deformed Heisenberg algebras; Lie subalgebra; Ideal of a Lie algebra;
D O I
10.1016/j.jalgebra.2018.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field, and let q is an element of F. The q-deformed Heisenberg algebra is the unital associative F-algebra H(q) with generators A, B and relation AB - qBA = I, where I is the multiplicative identity in H(q). The set of all Lie polynomials in A, B is the Lie subalgebra L(q) of H(q) generated by A, B. If q not equal 1 or the characteristic of F is not 2, then the equation AB - qBA = I cannot be expressed in terms of Lie algebra operations only, yet this equation still has consequences on the Lie algebra structure of L(q), which we investigate. We show that if q is not a root of unity, then L(q) is a Lie ideal of H(q), and the resulting quotient Lie algebra is infinite-dimensional and one-step nilpotent. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 50 条
  • [1] An extension of a q-deformed Heisenberg algebra and its Lie polynomials
    Cantuba, Rafael Reno S.
    Merciales, Mark Anthony C.
    [J]. EXPOSITIONES MATHEMATICAE, 2021, 39 (01) : 1 - 24
  • [2] q-deformed Heisenberg algebras
    Wess, J
    [J]. GEOMETRY AND QUANTUM PHYSICS, 2000, 543 : 311 - 382
  • [3] On centralisers in q-deformed Heisenberg algebras
    Hellstrom, L
    Silvestrov, SD
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (11) : 1163 - 1169
  • [4] q-deformed quantum Lie algebras
    Schmidt, Alexander
    Wachter, Hartmut
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (11) : 2289 - 2325
  • [5] Braided chains of q-deformed Heisenberg algebras
    Fiore, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5289 - 5298
  • [6] Knot polynomials from q-deformed algebras
    Smithies, CR
    Butler, PH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19): : 6413 - 6428
  • [7] Embedding q-deformed Heisenberg algebras into undeformed ones
    Fiore, G
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 1999, 43 (1-2) : 101 - 108
  • [8] Two-sided ideals in q-deformed Heisenberg algebras
    Hellström, L
    Silvestrov, S
    [J]. EXPOSITIONES MATHEMATICAE, 2005, 23 (02) : 99 - +
  • [9] Q-DEFORMED CLASSICAL LIE-ALGEBRAS AND THEIR ANYONIC REALIZATION
    FRAU, M
    RMONTEIRO, MA
    SCIUTO, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (03): : 801 - 816
  • [10] Common aspects of q-deformed Lie algebras and fractional calculus
    Herrmann, Richard
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4613 - 4622