Element-by-element post-processing of discontinuous Galerkin methods for Timoshenko beams

被引:11
|
作者
Celiker, F [1 ]
Cockburn, B [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
post-processing; superconvergence; Timoshenko beams; discontinuous Galerkin method;
D O I
10.1007/s10915-005-9057-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider discontinuous Galerkin approximations to the solution of Timoshenko beam problems and show how to post-process them in an element-by-element fashion to obtain a far better approximation. Indeed, we show numerically that, if polynomials of degree p >= 1 are used, the post-processed approximation converges with order 2p+1 in the L-infinity-norm throughout the domain. This has to be contrasted with the fact that before post-processing, the approximation converges with order p+1 only. Moreover, we show that this superconvergence property does not deteriorate as the the thickness of the beam becomes extremely small.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [1] Element-by-Element Post-Processing of Discontinuous Galerkin Methods for Timoshenko Beams
    Fatih Celiker
    Bernardo Cockburn
    [J]. Journal of Scientific Computing, 2006, 27 : 177 - 187
  • [2] ELEMENT-BY-ELEMENT POST-PROCESSING OF DISCONTINUOUS GALERKIN METHODS FOR NAGHDI ARCHES
    Celiker, Fatih
    Fan, Li
    Zhang, Zhimin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (03) : 391 - 409
  • [3] Discontinuous Galerkin methods for Timoshenko beams
    Celiker, F
    Cockburn, B
    Güzey, S
    Kanapady, R
    Soon, SC
    Stolarski, HK
    Tamma, K
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 221 - 231
  • [4] Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
    Celiker, Fatih
    Cockburn, Bernardo
    Shi, Ke
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 44 (01) : 1 - 37
  • [5] Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
    Fatih Celiker
    Bernardo Cockburn
    Ke Shi
    [J]. Journal of Scientific Computing, 2010, 44 : 1 - 37
  • [6] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [7] Local derivative post-processing for the discontinuous Galerkin method
    Ryan, Jennifer K.
    Cockburn, Bernardo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8642 - 8664
  • [8] Locking-free optimal discontinuous Galerkin methods for Timoshenko beams
    Celiker, Fatih
    Cockburn, Bernardo
    Stolarski, Henryk K.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) : 2297 - 2325
  • [9] Post-processing of Galerkin methods for hyperbolic problems
    Cockburn, B
    Luskin, M
    Shu, CW
    Süli, E
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 291 - 300
  • [10] Element Free Galerkin Post-processing Technique Based Error Estimator for Elasticity Problems
    Ahmed, Mohd
    Singh, Devender
    Desmukh, M. Noor
    [J]. CIVIL ENGINEERING JOURNAL-TEHRAN, 2018, 4 (12): : 2946 - 2958