On the Chromatic Numbers of Random Hypergraphs

被引:0
|
作者
Demidovich, Yu A. [1 ]
Shabanov, D. A. [1 ,2 ,3 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Oblast, Russia
[2] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow 119991, Russia
[3] Natl Res Univ, Higher Sch Econ, Moscow 101000, Russia
基金
俄罗斯科学基金会;
关键词
random hypergraph; chromatic number; second moment method;
D O I
10.1134/S1064562420050312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behavior of the chromatic number of the binomial random hypergraph H(n,k,p) is studied in the case when is l >= 4 fixed, n tends to infinity, and p = p(n) is a function. If p = p(n) does not decrease too slowly, we prove that the chromatic number of is concentrated in two or three consecutive values, which can be found explicitly as functions of n, p, and k.
引用
收藏
页码:380 / 383
页数:4
相关论文
共 50 条
  • [21] GENERALIZED CHROMATIC-NUMBERS OF RANDOM GRAPHS
    SCHEINERMAN, ER
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (01) : 74 - 80
  • [22] GENERALIZED CHROMATIC-NUMBERS OF RANDOM GRAPHS
    BOLLOBAS, B
    THOMASON, A
    RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (2-3) : 353 - 356
  • [23] The genus of G-spaces and topological lower bounds for chromatic numbers of hypergraphs
    Volovikov A.Yu.
    Journal of Mathematical Sciences, 2007, 144 (5) : 4387 - 4397
  • [24] STAR CHROMATIC-NUMBERS OF HYPERGRAPHS AND PARTIAL STEINER TRIPLE-SYSTEMS
    HADDAD, L
    ZHOU, H
    DISCRETE MATHEMATICS, 1995, 146 (1-3) : 45 - 58
  • [25] On the Chromatic Thresholds of Hypergraphs
    Balogh, Jozsef
    Butterfield, Jane
    Hu, Ping
    Lenz, John
    Mubayi, Dhruv
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (02): : 172 - 212
  • [26] Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs
    Bogolyubskii, L. I.
    Gusev, A. S.
    Pyaderkin, M. M.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2014, 90 (01) : 462 - 465
  • [27] Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs
    L. I. Bogolyubskii
    A. S. Gusev
    M. M. Pyaderkin
    A. M. Raigorodskii
    Doklady Mathematics, 2014, 90 : 462 - 465
  • [28] Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
    Bogolubsky, L. I.
    Gusev, A. S.
    Pyaderkin, M. M.
    Raigorodskii, A. M.
    SBORNIK MATHEMATICS, 2015, 206 (10) : 1340 - 1374
  • [29] Chromatic polynomials of hypergraphs
    Drgas-Burchardt, Ewa
    Lazuka, Ewa
    APPLIED MATHEMATICS LETTERS, 2007, 20 (12) : 1250 - 1254
  • [30] ON THE INDEPENDENCE AND CHROMATIC-NUMBERS OF RANDOM REGULAR GRAPHS
    FRIEZE, AM
    LUCZAK, T
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 54 (01) : 123 - 132