Modeling Laser-Driven High-Rate Plasticity in BCC Lead

被引:4
|
作者
Rudd, Robert E. [1 ]
Yang, L. H. [1 ]
Powell, P. D. [1 ]
Graham, P. [2 ]
Arsenlis, A. [1 ]
Cavallo, R. M. [1 ]
Krygier, A. G. [1 ]
McNaney, J. M. [1 ]
Prisbrey, S. T. [1 ]
Remington, B. A. [1 ]
Swift, D. C. [1 ]
Wehrenberg, C. E. [1 ]
Park, H. -S. [1 ]
机构
[1] Lawrence Livermore Natl Lab, 7000 East Ave,L-367, Livermore, CA 94550 USA
[2] Atom Weap Estab, Reading RG7 4PR, Berks, England
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2017 | 2018年 / 1979卷
关键词
DEFORMATION; TRANSITION;
D O I
10.1063/1.5044836
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We discuss the constitutive modeling of lead in the high-pressure body-centered cubic (bcc) phase. Constitutive models for lead in the literature are calibrated to experiments in the low-pressure face-centered cubic (fcc) phase. The Steinberg-Guinan model for pure lead is one such model. As an assessment of the effect of different crystal structure at high pressure, we construct a model for the bcc phase. The model is in the Improved Steinberg-Guinan form, with the pressure hardening determined by first-principles calculations of the pressure dependence of the shear modulus. The constitutive models have been run in continuum simulations of high-pressure deformation experiments as a test of the models. High-energy laser platforms such as the National Ignition Facility (NIF) can probe plasticity at extremely high pressures and rates in largely shock-free ramp-compression waves. Here we consider experiments on lead at peak pressures of similar to 350-500 GPa and strain rates of similar to 10(7)/s.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High-Rate Mining Technology Simulation Modeling
    V. I. Klishin
    A. N. Starodubov
    V. V. Zinov’ev
    A. D. Turgenev
    Journal of Mining Science, 2022, 58 : 398 - 404
  • [32] Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration
    N.Xu
    M.J.V.Streeter
    O.C.Ettlinger
    H.Ahmed
    S.Astbury
    M.Borghesi
    N.Bourgeois
    C.B.Curry
    S.J.D.Dann
    N.P.Dover
    T.Dzelzainis
    V.Istokskaia
    M.Gauthier
    L.Giuffrida
    G.D.Glenn
    S.H.Glenzer
    R.J.Gray
    J.S.Green
    G.S.Hicks
    C.Hyland
    M.King
    B.Loughran
    D.Margarone
    O.Mc Cusker
    P.Mc Kenna
    C.Parisua?a
    P.Parsons
    C.Spindloe
    D.R.Symes
    F.Treffert
    C.A.J.Palmer
    Z.Najmudin
    HighPowerLaserScienceandEngineering, 2023, 11 (02) : 64 - 74
  • [33] Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration
    Xu, N.
    Streeter, M. J. V.
    Ettlinger, O. C.
    Ahmed, H.
    Astbury, S.
    Borghesi, M.
    Bourgeois, N.
    Curry, C. B.
    Dann, S. J. D.
    Dover, N. P.
    Dzelzainis, T.
    Istokskaia, V.
    Gauthier, M.
    Giuffrida, L.
    Glenn, G. D.
    Glenzer, S. H.
    Gray, R. J.
    Green, J. S.
    Hicks, G. S.
    Hyland, C.
    King, M.
    Loughran, B.
    Margarone, D.
    McCusker, O.
    McKenna, P.
    Parisuana, C.
    Parsons, P.
    Spindloe, C.
    Symes, D. R.
    Treffert, F.
    Palmer, C. A. J.
    Najmudin, Z.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [34] Applications of machine learning to a compact magnetic spectrometer for high repetition rate, laser-driven particle acceleration
    Swanson, K. K.
    Mariscal, D. A.
    Djordjevic, B. Z.
    Zeraouli, G.
    Scott, G. G.
    Hollinger, R.
    Wang, S.
    Song, H.
    Sullivan, B.
    Nedbailo, R.
    Rocca, J. J.
    Ma, T.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (10):
  • [35] Compact high-repetition rate femtosecond laser-driven hard-x-ray source
    Egbert, A
    Mader, B
    Chichkov, BN
    Girardeau-Montaut, JP
    ADVANCES IN LABORATORY-BASED X-RAY SOURCES AND OPTICS III, 2002, 4781 : 69 - 76
  • [36] Modeling of laser-driven water-confined shocks into porous graphite
    Seisson, G.
    Hebert, D.
    Bertron, I.
    Videau, L.
    Combis, P.
    Berthe, L.
    Boustie, M.
    18TH APS-SCCM AND 24TH AIRAPT, PTS 1-19, 2014, 500
  • [37] Modeling laser-driven electron acceleration using WARP with Fourier decomposition
    Lee, P.
    Audet, T. L.
    Lehe, R.
    Vay, J. -L.
    Maynard, G.
    Cros, B.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 829 : 358 - 362
  • [38] High-pressure, laser-driven deformation of an aluminum alloy
    McNaney, JM
    Edwards, MJ
    Becker, R
    Lorenz, KT
    Remington, BA
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (09): : 2625 - 2631
  • [39] IMPROVING LASER-DRIVEN FLYER EFFICIENCY WITH HIGH ABSORPTANCE LAYERS
    Brierley, H. R.
    Williamson, D. M.
    Vine, T. A.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
  • [40] Focusing of high-current laser-driven ion beams
    Badziak, J.
    Jablonski, S.
    APPLIED PHYSICS LETTERS, 2007, 90 (15)